Project description:This SuperSeries is composed of the following subset Series: GSE30971: The Histone Methyltransferase Wbp7 Controls Macrophage Function through GPI Glycolipid Anchor Synthesis. [Expression Profile] GSE30972: The Histone Methyltransferase Wbp7 Controls Macrophage Function through GPI Glycolipid Anchor Synthesis. [ChIP_seq] Refer to individual Series
Project description:Histone methyltransferases catalyze site-specific deposition of methyl groups, enabling recruitment of transcriptional regulators. In mammals, trimethylation of lysine 4 in histone H3, a modification localized at the transcription start sites of active genes, is catalyzed by six enzymes (SET1a and SET1b, MLL1M-bM-^@M-^SMLL4) whose specific functions are largely unknown. By using a genomic approach, we found that in macrophages, MLL4 (also known as Wbp7) was required for the expression of Pigp, an essential component of the GPI-GlcNAc transferase, the enzyme catalyzing the first step of glycosylphosphatidylinositol (GPI) anchor synthesis. Impaired Pigp expression in Wbp7-/- macrophages abolished GPI anchor-dependent loading of proteins on the cell membrane. Consistently, loss of GPI-anchored CD14, the coreceptor for lipopolysaccharide (LPS) and other bacterial molecules, markedly attenuated LPS-triggered intracellular signals and gene expression changes. These data link a histone-modifying enzyme to a biosynthetic pathway and indicate a specialized biological role for Wbp7 in macrophage function and antimicrobial response. Gene expression profiles for bone marrow-derived macrophages (BMDM) from either Wbp7+/- (HET) or Wbp7-/- (KO). Cells were left untreated or challenged with lipopolysaccharide (LPS) for 2hrs or 4hrs. Each genotype-treatment combination were performed in triplicate.
Project description:Histone methyltransferases catalyze site-specific deposition of methyl groups, enabling recruitment of transcriptional regulators. In mammals, trimethylation of lysine 4 in histone H3, a modification localized at the transcription start sites of active genes, is catalyzed by six enzymes (SET1a and SET1b, MLL1M-bM-^@M-^SMLL4) whose specific functions are largely unknown. By using a genomic approach, we found that in macrophages, MLL4 (also known as Wbp7) was required for the expression of Pigp, an essential component of the GPI-GlcNAc transferase, the enzyme catalyzing the first step of glycosylphosphatidylinositol (GPI) anchor synthesis. Impaired Pigp expression in Wbp7-/- macrophages abolished GPI anchor-dependent loading of proteins on the cell membrane. Consistently, loss of GPI-anchored CD14, the coreceptor for lipopolysaccharide (LPS) and other bacterial molecules, markedly attenuated LPS-triggered intracellular signals and gene expression changes. These data link a histone-modifying enzyme to a biosynthetic pathway and indicate a specialized biological role for Wbp7 in macrophage function and antimicrobial response. Chromatin immuno-precipitations of H3 histone try-methylated on lysine 4 followed by multiparallel sequencing performed in murine bone marrow-derive macrophages (BMDM). Experiments carried out in untreated cells as well as in cells treated for 4hrs with lipopolysaccharide (LPS), for both Wbp7+/- (HET) and Wbp7-/- (KO) mice.
Project description:Histone methyltransferases catalyze site-specific deposition of methyl groups, enabling recruitment of transcriptional regulators. In mammals, trimethylation of lysine 4 in histone H3, a modification localized at the transcription start sites of active genes, is catalyzed by six enzymes (SET1a and SET1b, MLL1–MLL4) whose specific functions are largely unknown. By using a genomic approach, we found that in macrophages, MLL4 (also known as Wbp7) was required for the expression of Pigp, an essential component of the GPI-GlcNAc transferase, the enzyme catalyzing the first step of glycosylphosphatidylinositol (GPI) anchor synthesis. Impaired Pigp expression in Wbp7-/- macrophages abolished GPI anchor-dependent loading of proteins on the cell membrane. Consistently, loss of GPI-anchored CD14, the coreceptor for lipopolysaccharide (LPS) and other bacterial molecules, markedly attenuated LPS-triggered intracellular signals and gene expression changes. These data link a histone-modifying enzyme to a biosynthetic pathway and indicate a specialized biological role for Wbp7 in macrophage function and antimicrobial response.
Project description:Histone methyltransferases catalyze site-specific deposition of methyl groups, enabling recruitment of transcriptional regulators. In mammals, trimethylation of lysine 4 in histone H3, a modification localized at the transcription start sites of active genes, is catalyzed by six enzymes (SET1a and SET1b, MLL1–MLL4) whose specific functions are largely unknown. By using a genomic approach, we found that in macrophages, MLL4 (also known as Wbp7) was required for the expression of Pigp, an essential component of the GPI-GlcNAc transferase, the enzyme catalyzing the first step of glycosylphosphatidylinositol (GPI) anchor synthesis. Impaired Pigp expression in Wbp7-/- macrophages abolished GPI anchor-dependent loading of proteins on the cell membrane. Consistently, loss of GPI-anchored CD14, the coreceptor for lipopolysaccharide (LPS) and other bacterial molecules, markedly attenuated LPS-triggered intracellular signals and gene expression changes. These data link a histone-modifying enzyme to a biosynthetic pathway and indicate a specialized biological role for Wbp7 in macrophage function and antimicrobial response.
Project description:Tissue inhibitor of metalloproteinase 1 (TIMP-1) controls matrix metalloproteinase (MMP) activity through 1:1 stochiometric binding. Human TIMP-1 fused to a glycosylphosphatidylinositol (GPI) anchor (TIMP-1-GPI) shifts the activity of TIMP-1 from the extracellular matrix to the cell surface. TIMP-1-GPI treated renal cell carcinoma cells (RCC) show increased apoptosis and reduced proliferation. Transcriptomic profiling and regulatory pathway mapping were used to identify potential mechanisms driving these effects. Significant changes in inhibitor of DNA binding (IDs), TGF-β1/SMAD and BMP pathways resulted from TIMP-1-GPI treatment. These events were linked to reduced TGF-β1 signaling mediated by inhibition of proteolytic processing of latent TGF-β1 by TIMP-1-GPI. Activity of TIMP-1 from the extracellular matrix to the cell surface. TIMP-1-GPI treated renal cell carcinoma cells (RCC) show increased apoptosis and reduced proliferation. Transcriptomic profiling and regulatory pathway mapping were used to identify potential mechanisms driving these effects. Significant changes in inhibitor of DNA binding (IDs), TGF-β1/SMAD and BMP pathways resulted from TIMP-1-GPI treatment. These events were linked to reduced TGF-β1 signaling mediated by inhibition of proteolytic processing of latent TGF-β1 by TIMP-1-GPI. Renal cell carcinoma cells were transfected with empty vector, rhTimp1 and 2 concentrations of Timp1-GPI fusion protein
Project description:We show that the human monocyte model BLaER1 contains GPI-anchor-deficient cells, which lack CD14 surface expression when differentiated to monocytes, resulting in diminished LPS/TLR4 responsiveness. We found that this GPI anchor defect is caused by epigenetic silencing of the PIGH gene, leading to a random distribution of intact and PIGH-deficient clones after single-cell cloning.
Project description:Tissue inhibitor of metalloproteinase 1 (TIMP-1) controls matrix metalloproteinase (MMP) activity through 1:1 stochiometric binding. Human TIMP-1 fused to a glycosylphosphatidylinositol (GPI) anchor (TIMP-1-GPI) shifts the activity of TIMP-1 from the extracellular matrix to the cell surface. TIMP-1-GPI treated renal cell carcinoma cells (RCC) show increased apoptosis and reduced proliferation. Transcriptomic profiling and regulatory pathway mapping were used to identify potential mechanisms driving these effects. Significant changes in inhibitor of DNA binding (IDs), TGF-β1/SMAD and BMP pathways resulted from TIMP-1-GPI treatment. These events were linked to reduced TGF-β1 signaling mediated by inhibition of proteolytic processing of latent TGF-β1 by TIMP-1-GPI. Activity of TIMP-1 from the extracellular matrix to the cell surface. TIMP-1-GPI treated renal cell carcinoma cells (RCC) show increased apoptosis and reduced proliferation. Transcriptomic profiling and regulatory pathway mapping were used to identify potential mechanisms driving these effects. Significant changes in inhibitor of DNA binding (IDs), TGF-β1/SMAD and BMP pathways resulted from TIMP-1-GPI treatment. These events were linked to reduced TGF-β1 signaling mediated by inhibition of proteolytic processing of latent TGF-β1 by TIMP-1-GPI.