Project description:To assess variation and inheritance of genome-wide patterns of DNA methylation simultaneously in humans, we applied reduced representation bisulfite sequencing (RRBS) to somatic DNA from six members of a three-generation family. Reduced representation bisulfite sequencing was applied to genomic DNA from leukocytes of 6 family members and two unrelated individuals.
Project description:We report the analysis of DNA methylation in mouse chromaffin cell lines using reduced representation bisulfite sequencing (RRBS). We compared DNA methylation profiles of cell lines with or without a knock-out of Sdhb gene, showing that Sdhb disruption results in a hypermethylator phenotype. Reduced representation bisulfite sequencing of 4 mouse chromaffin cell samples (2 Sdhb wild-type and 2 Sdhb knock-out).
Project description:Reduced representation bisulfite sequencing (RRBS) was conducted on dorsolateral prefrontal cortex tissue samples taken from the brains of control individuals not affected by neurological disorder DNA methylation profiling was conducted using RRBS and the Illumina Genome Analyzer IIx
Project description:DNA methylation is a mechanism for long-term transcriptional regulation and is required for normal cellular differentiation. Failure to properly establish or maintain DNA methylation patterns leads to cell dysfunction and diseases such as cancer. Identifying DNA methylation signatures in complex tissues can be challenging due to inaccurate cell enrichment methods and low DNA yields. We have developed a technique called Laser Capture Microdissection-Reduced Representation Bisulfite Sequencing (LCM-RRBS) for the multiplexed interrogation of the DNA methylation status of CpG Islands and promoters. LCM-RRBS accurately and reproducibly profiles genome-wide methylation of DNA extracted from microdissected fresh frozen or formalin-fixed paraffin-embedded tissue samples. To demonstrate the utility of LCM-RRBS, we characterized changes in DNA methylation associated with gonadectomy-induced adrenocortical neoplasia in the mouse. Compared to adjacent normal tissue, the adrenocortical tumors showed reproducible gains and losses of DNA methylation at genes involved in cell differentiation and organ development. LCM-RRBS is a rapid, cost-effective, and sensitive technique for analyzing DNA methylation in heterogeneous tissues and will facilitate the investigation of DNA methylation in cancer and organ development. Laser capture microdissection-reduced representation bisulfite sequencing and reduced representation bisulfite sequencing on human blood leukocyte, human endometrial tumor, mouse liver tissue, and mouse normal and neoplastic adrenal tissue
Project description:Seasonal photoperiodic changes have strong impact on development in Nasonia vitripennis. Here, Using high-throughput Reduced Representation Bisulfite Sequencing (RRBS) and single-molecule-based sequencing, we generated DNA methylation maps of female wasps maintained in long vs short day. We have identified differential methylated loci that encode the photoperiodic change. analysis of DNA methylation in female wasps maintained in long vs short day, using RRBS followed by Illumina sequencing
Project description:We describe XmaI-RRBS method for rapid and affordable genome-wide DNA methylation analysis, with library preparation taking only four days and sequencing possible within four hours. Small sizes of the XmaI-RRBS libraries allow their multiplexing and sequencing on the benchtop high-throughput machines. Described here is the first RRBS protocol validated for the Ion Torrent Personal Genome Machine. DNA from MCF7 cell line and 6 normal breast samples (total 7 samples) were subjected to reduced representation bisulfite sequencing analysis (XmaI-RRBS) by using Ion Torrent platform.
Project description:reduced representation bisulfite sequencing (RRBS) sequencing was performed to analyze methylation profiles regulated by DNMT1 in C3H10T1/2 MSCs with or without OB differentiation.
Project description:We conducted reduced representation bisulfite sequencing (RRBS) on myonuclei and interstitial nuclei and observed stark differences in methylation patterns during adaptation