Project description:We applied a custom tiled microarray to examine murine gammaherpesvirus 68 (MHV68) polyadenylated transcript expression in a timecourse of de novo infection of fibroblast cells and following phorbol ester-mediated reactivation from a latently-infected B cell line. During de novo infection, all ORFs were transcribed and clustered into four major temporal groups that were overlapping, yet distinct from clusters based on the phorbol ester-stimulated B cell reactivation timecourse. High-density transcript analysis at two-hour intervals during de novo infection mapped gene boundaries with a 20-nt resolution, including a previously undefined ORF73 transcript and the MHV68 ORF63 homolog of KSHV vNLRP1. ORF6 transcript initiation was mapped by tiled array and confirmed by 5' RACE. The ~1.3 kb region upstream of ORF6 was responsive to lytic infection and MHV68 RTA, identifying a novel RTA-responsive promoter. Transcription in intergenic regions consistent with the previously defined expressed genomic regions was detected during both types of productive infection. We conclude that the MHV68 transcriptome during de novo fibroblast infection and upon phorbol ester-stimulated B cell reactivation is dynamic and distinct, highlighting the need to evaluate further transcript structure and the context-dependent molecular events that govern viral gene expression during chronic infection. This SuperSeries is composed of the following subset Series: GSE35863: Tiled Array Experiment of Murine Gammaherpesvirus 68 Transcripts In Newly Infected Fibroblasts GSE35865: Tiled Array Experiment of Murine Gammaherpesvirus 68 Transcripts Upon TPA-Stimulated Reactivation From Latency Refer to individual Series
Project description:We applied a custom tiled microarray to examine murine gammaherpesvirus 68 (MHV68) polyadenylated transcript expression in a timecourse of de novo infection of fibroblast cells and following phorbol ester-mediated reactivation from a latently-infected B cell line. During de novo infection, all ORFs were transcribed and clustered into four major temporal groups that were overlapping, yet distinct from clusters based on the phorbol ester-stimulated B cell reactivation timecourse. High-density transcript analysis at two-hour intervals during de novo infection mapped gene boundaries with a 20-nt resolution, including a previously undefined ORF73 transcript and the MHV68 ORF63 homolog of KSHV vNLRP1. ORF6 transcript initiation was mapped by tiled array and confirmed by 5' RACE. The ~1.3 kb region upstream of ORF6 was responsive to lytic infection and MHV68 RTA, identifying a novel RTA-responsive promoter. Transcription in intergenic regions consistent with the previously defined expressed genomic regions was detected during both types of productive infection. We conclude that the MHV68 transcriptome during de novo fibroblast infection and upon phorbol ester-stimulated B cell reactivation is dynamic and distinct, highlighting the need to evaluate further transcript structure and the context-dependent molecular events that govern viral gene expression during chronic infection. This SuperSeries is composed of the SubSeries listed below.
Project description:RTA, the viral Replication and Transcription Activator, is essential for rhadinovirus lytic gene expression upon de novo infection and reactivation from latency. LPS/TLR4 engagement enhances rhadinovirus reactivation. We developed the HE-RIT cell line, a latent murine A20 B cell inducible for Flag-RTA expression and murine gammaherpesvirus 68 reactivation. LPS acted as a second stimulus to drive virus reactivation from latency in the context of induced expression of FLAG-RTA. We applied RNAseq to examine for genome-wide changes in viral gene expression in response to doxycycline-induced RTA-FLAG, alone or in combination with LPS.
Project description:Murine gammaherpesvirus 68 (MHV-68) is closely related to Epstein-Barr virus (EBV) and KaposiM-bM-^@M-^Ys sarcoma-associated herpesvirus (KSHV) and provides a small animal model to study the pathogenesis of gammaherpesvirus (M-NM-3HV) infections. To completely explore the potential of the MHV-68 system for the investigation of gHV miRNAs, it would be desirable to know the number and expression patterns of all miRNAs encoded by MHV-68. By using small RNA deep sequencing, we systematically investigated the MHV-68 miRNA expression profiles in both lytically and persistently infected cells. In addition to the known nine MHV-68 miRNAs, we identified six novel MHV-68 miRNA genes and analyzed the expression levels of all MHV-68 miRNAs. Furthermore, we also characterized the cellular miRNA expression signatures in MHV-68 infected versus non-infected NIH3T3 fibroblasts and in TPA-treated versus non-treated S11 cells. We found that mmu-mir-15b and mmu-mir-16 are highly upregulated upon MHV-68 infection of NIH3T3 cells, indicating a potential role of cellular miRNAs during MHV-68 infection. Our data will aid to fully explore the functions of gHV miRNAs. A mouse fibroblast cell line infected with/without MHV-68 and a MHV-68 infected mouse B lymphoma cell line treated with/without TPA (4 samples in total) were examined.
Project description:Previous studies identified a role for latent herpesvirus infection in cross-protection to infection and exacerbation of chronic inflammatory diseases. Here, we compared the gene expression signature from livers, spleens and brains of mice infected with wild-type gammaherpesvirus 68 (MHV68), a mutant virus defective in the establishment of latency (ORF73.stop) or mockulum. We identified over 600 genes differentially expressed in organs of mice latently infected with MHV68 and found distinct sets of genes linked to different pathways were altered in spleen compared to liver. Several of the most differentially expressed latency-specific genes (e.g. IFNγ, Cxcl9, Ccl5) are associated with known latency-specific phenotypes. RNA was extracted from livers, spleens and brains of 7-9 week old male C57Bl/6 mice infected with gammaherpesvirus 68 (MHV68), a virus defective in establishment of latency (ORF73.stop) or mockulum. RNA from 3-4 mice per treatment was pooled and analyzed by M430 2.0 Affymetrix Gene Chip. Three biologic replicates were analyzed for all conditions, except mock livers, for which four biologic replicates were analyzed.
Project description:Murine gammaherpesvirus 68 (MHV-68) is closely related to Epstein-Barr virus (EBV) and Kaposi’s sarcoma-associated herpesvirus (KSHV) and provides a small animal model to study the pathogenesis of gammaherpesvirus (γHV) infections. To completely explore the potential of the MHV-68 system for the investigation of gHV miRNAs, it would be desirable to know the number and expression patterns of all miRNAs encoded by MHV-68. By using small RNA deep sequencing, we systematically investigated the MHV-68 miRNA expression profiles in both lytically and persistently infected cells. In addition to the known nine MHV-68 miRNAs, we identified six novel MHV-68 miRNA genes and analyzed the expression levels of all MHV-68 miRNAs. Furthermore, we also characterized the cellular miRNA expression signatures in MHV-68 infected versus non-infected NIH3T3 fibroblasts and in TPA-treated versus non-treated S11 cells. We found that mmu-mir-15b and mmu-mir-16 are highly upregulated upon MHV-68 infection of NIH3T3 cells, indicating a potential role of cellular miRNAs during MHV-68 infection. Our data will aid to fully explore the functions of gHV miRNAs.
Project description:To investigate HCMV (and human host) gene expression profile during latency and reactivation, we infected THP-1 cells with the wildtype HCMV-TB40E or with recombinant viruses that cannot establish latency (UL138stop) or cannot reactivate (UL135stop). After the establishment of viral latency, we treated cells with TPA to induce cellular differentiation and viral reactivation. We then performed gene expression profiling analysis using data obtained from RNA-seq over a timecourse of undifferentiated and differentiated cells that are infected with each virus. Uninfected cells are included as a control for gene expression changes that are virally induced.
Project description:Previous studies identified a role for latent herpesvirus infection in cross-protection to infection and exacerbation of chronic inflammatory diseases. Here, we compared the gene expression signature from livers, spleens and brains of mice infected with wild-type gammaherpesvirus 68 (MHV68), a mutant virus defective in the establishment of latency (ORF73.stop) or mockulum. We identified over 600 genes differentially expressed in organs of mice latently infected with MHV68 and found distinct sets of genes linked to different pathways were altered in spleen compared to liver. Several of the most differentially expressed latency-specific genes (e.g. IFNγ, Cxcl9, Ccl5) are associated with known latency-specific phenotypes.