Project description:Meiotic chromosomes are highly compacted yet remain transcriptionally active. To understand how chromosome folding accommodates transcription, we investigated the assembly of the axial element, the proteinaceous structure that compacts meiotic chromosomes and promotes recombination and fertility. We found that the axial element proteins of budding yeast are flexibly anchored to chromatin by the ring-like cohesin complex and biased towards small chromosomes by a separate modulating mechanism that requires the conserved axial-element component Hop1. The ubiquitous presence of cohesin at sites of convergent transcription provides well-dispersed points for axis attachment and thus compaction. Axis protein enrichment at these sites directly correlates with the propensity for recombination initiation. Importantly, axis anchoring by cohesin is adjustable and readily displaced in the direction of transcription by the transcriptional machinery. We propose that such robust but flexible tethering allows the axial element to promote recombination while easily adapting to changes in chromosome activity. 7 genome wide meiotic ChIP-seq sets: V5-Red1 DNA interaction (V5-Red1-ChIP), V5-Red1 DNA interaction in the absence of axis protein Hop1 (V5-Red1-ChIP, hop1delta), V5-Red1 DNA interaction in the absence of another two axis proteins Hop1 and Rec8 (V5-Red1-ChIP, hop1delta rec8delta), Rec8-HA DNA interaction (Rec8-HA-ChIP), Rec8-HA DNA interactionin the absence of Red1 (Rec8-HA-ChIP, red1delta), and 2 untagged control (V5-untagged-ChIP, HA-untagged-ChIP) (corresponding to the main Figure5)
Project description:The DNA double strand breaks (DSBs) that initiate meiotic recombination are formed in the context of the meiotic chromosome axis, which in budding yeast contains a meiosis-specific cohesin isoform and the meiosis-specific proteins Hop1 and Red1. Hop1 and Red are important for DSB formation; DSB levels are reduced in their absence and their levels, which vary along the lengths of chromosomes, are positively correlated with DSB levels. How axis protein levels influence DSB formation and recombination remains unclear. To address this question, we developed a novel approach that uses a bacterial ParB-parS partition system to recruit axis proteins at high levels to inserts at recombination coldspots where Hop1 and Red1 levels are normally low. Recruiting Hop1 markedly increased DSBs and homologous recombination at target loci, to levels equivalent to those observed at endogenous recombination hotspots. This local increase in DSBs did not require Red1 or the meiosis-specific cohesin component Rec8, indicating that, of the axis proteins, Hop1 is sufficient to promote DSB formation. However, while most crossovers at endogenous recombination hotspots are formed by the meiosis-specific MutLγ resolvase, only a small fraction of crossovers that formed at an insert locus required MutLγ, regardless of whether or not Hop1 was recruited to that locus. Thus, while local Hop1 levels determine local DSB levels, the recombination pathways that repair these breaks can be determined by other factors, raising the intriguing possibility that different recombination pathways operate in different parts of the genome.
Project description:Meiotic recombination starts with the formation of DNA double-strand breaks (DSBs) made by Spo11. In Saccharomyces cerevisiae, the nonrandom distribution of meiotic DSBs along the genome can be attributed to the combined influence of multiple factors on Spo11 cleavage. One factor is higher-order chromatin structure, particularly the loop-axis organization of meiotic chromosomes. Axial element proteins Red1 and Hop1 provide the basis for meiotic loop-axis organization and are implicated in diverse aspects of meiotic recombination. Mek1 is a meiotic-specific kinase associated with Red1 and Hop1. Red1, Hop1, and Mek1 are required for normal DSB levels, but their effects on the DSB distribution has not been examined, and exactly how these proteins influence DSB levels and distribution is unknown. Here, we examined the contributions of Red1, Hop1, and Mek1 to the DSB distribution by deep sequencing and mapping Spo11-associated oligonucleotides from red1, hop1, and mek1 mutant strains, thereby generating genome-wide meiotic DSB maps.
Project description:Mcm2-7 ChIP in pre-meiotic and pre-mitotic cells, axis factor ChIP in wild-type and replication compromised strains in meiosis Multiple studies of meiotic chromosomes were undertaken. To study DNA replication, the locations of replicative helicase (Mcm2-7) were mapped in pre-meiotic and pre-mitotic cells, and DNA replication profiles were created for pre-meiotic S (meiS) and pre-mitotic S (mitS) phases. Early origins were mapped in hydroxyurea for wild-type cells in mitS + 200mM HU, and meiS +20mM HU for wild-type, sml1, rec8 and spo11 deletion cells. Rec8, Hop1 and Red1 binding to meiotic chromosomes was evaluated using ChIP-chip in wild-type cells with and without 20 mM HU, and in cdc6-mn and clb5 clb6 delete cells. Finally, meiotic DNA double-strand breaks (DSBs) were mapped in cdc6-mn dmc1 delete cells by measuring the ssDNA that accumulates at DSB hotspots.
Project description:The meiotic cell division reduces the chromosome number from diploid to haploid to form gametes for sexual reproduction. Although much progress has been made in understanding meiotic recombination and the two meiotic divisions, the processes leading up to recombination, including the prolonged pre-meiotic S phase (meiS) and the assembly of meiotic chromosome axes, remain poorly defined. We have used genome-wide approaches in Saccharomyces cerevisiae to measure the kinetics of pre-meiotic DNA replication, and to investigate the interdependencies between replication and axis formation. We found that replication initiation was delayed for a large number of origins in meiS compared to mitosis, and that meiotic cells were far more sensitive to replication inhibition, most likely due to the starvation conditions required for meiotic induction. Moreover, replication initiation was delayed even in the absence of chromosome axes, indicating replication timing is independent of the process of axis assembly. Finally, we found that cells were able to install axis components and initiate recombination on unreplicated DNA. Thus, although pre-meiotic DNA replication and meiotic chromosome axis formation occur concurrently, they are not directly coupled. The functional separation of these processes reveals a modular method of building meiotic chromosomes, and predicts that any crosstalk between these modules must occur through superimposed regulatory mechanisms. Multiple studies of meiotic chromosomes were undertaken. To study DNA replication, the locations of replicative helicase (Mcm2-7) were mapped in pre-meiotic and pre-mitotic cells, and DNA replication profiles were created for pre-meiotic S (meiS) and pre-mitotic S (mitS) phases. Early origins were mapped in hydroxyurea for wild-type cells in mitS + 200mM HU, and meiS +20mM HU for wild-type, sml1, rec8 and spo11 deletion cells. Rec8, Hop1 and Red1 binding to meiotic chromosomes was evaluated using ChIP-chip in wild-type cells with and without 20 mM HU, and in cdc6-mn and clb5 clb6 delete cells. Finally, meiotic DNA double-strand breaks (DSBs) were mapped in cdc6-mn dmc1 delete cells by measuring the ssDNA that accumulates at DSB hotspots. This SuperSeries is composed of the following subset Series: GSE35658: Chromatin IP for Mcm2-7, Rec8, Hop1 and Red1 GSE35662: S phase and HU profiles in wild-type and mutant cells GSE35666: DSB formation in replication compromised cells
Project description:Here we studied the budding yeast Lachancea kluyveri, a cousin of the model Saccharomyces cerevisiae, in order to try to understand the mechanism responsible for the absence of meiotic recombination on its almost entire sex chromosome (Brion et al. 2017). We performed protein-DNA interaction mapping of Rec8, Red1, Hop1 and Zip3 proteins by ChIP-seq. Briefly, we observed an enrichment of Zip3, a protein known as a marker of type I crossing-overs, where peaks of DSBs were detected by CC-seq and a virtual absence of Zip3 within Lakl0C-left. For Rec8, a meiotic specific protein part of the cohesin complex, we detected enriched peaks at centromeres and inside intergenic regions flanked by convergent ORFs everywhere in the genome Lakl0C-left included. Remarkably, Red1 and Hop1, known to form the lateral element of the synaptonemal complex and important for DSB formation, were enriched mainly at Rec8 peaks except at centromeres and particurlarly on Lakl0C-left where they are completely absent.
Project description:Meiotic chromosomes are highly compacted yet remain transcriptionally active. To understand how chromosome folding accommodates transcription, we investigated the assembly of the axial element, the proteinaceous structure that compacts meiotic chromosomes and promotes recombination and fertility. We found that the axial-element proteins of budding yeast are flexibly anchored to chromatin by the ring-like cohesin complex and biased towards small chromosomes by a separate modulating mechanism that requires the conserved axial element component Hop1. The ubiquitous presence of cohesin at sites of convergent transcription provides well-dispersed points for axis attachment and thus compaction. Axis protein enrichment at these sites directly correlates with the propensity for recombination initiation nearby. Importantly, axis anchoring by cohesin is adjustable and readily displaced in the direction of transcription by the transcriptional machinery. We propose that such robust but flexible tethering allows the highly structured axial element to promote recombination while easily adapting to changes in chromosome activity. ChIP-seq experiments were undertaken to understand the features of meiotic chromosomal axes assembly in meiosis. The genome-wide distribution of axis proteins including Hop1, Red1 as well as cohesin subunits Rec8 and Smc3 were measured. Axis protein binding pattern is also measured in rec8 mutant and pREC8-SCC1 in rec8 mutant.
Project description:Crossover recombination is a hallmark of meiosis, which holds the paternal and maternal chromosomes (homologs) together for their faithful separation, meanwhile, it promotes genetic diversity of progenies. The pattern of crossover is mainly controlled by the architecture of meiotic chromosomes. Environmental factors, especially temperature, also play an important role in modulating crossovers. However, it is unclear how temperature affects crossovers. Here, we examined the distributions of budding yeast axis components (Red1, Hop1, and Rec8) and the CO-associated Zip3 foci in detail in different temperatures, and found that both increased and decreased temperatures result in shorter meiotic chromosome axes and more crossovers. Further investigations showed that altered temperature coordinately enhanced the hyperabundant accumulation of Hop1 and Red1 on chromosomes and the number of Zip3 foci. Most importantly, temperature-induced alterations in axis distribution and Zip3 foci depend on the changes in DNA negative supercoil. These findings suggest that yeast meiosis senses temperature changes by increasing the level of negative supercoil to increase crossovers and modulate chromosome organization. These findings provide a novel view in understanding the effect and mechanism of temperature on meiosis recombination and chromosome organization, and thus also have an important implication in evolution and breeding.
Project description:Meiotic chromosomes assemble characteristic “axial element” structures that are essential for fertility and provide the chromosomal context for meiotic recombination, synapsis and checkpoint signaling. Whether these meiotic processes are equally dependent on axial element integrity has remained unclear. Here, we investigated this question in S. cerevisiae using the putative condensin allele ycs4S. We show that the severe axial element assembly defects of this allele are explained by a linked mutation in the promoter of the major axial element gene RED1 that reduces Red1 protein levels to 20-25% of wild type. Intriguingly, the Red1 levels of ycs4S mutants support meiotic processes linked to axis integrity, including DNA double-strand break formation and deposition of the synapsis protein Zip1, at levels that permit 70% gamete survival. By contrast, the ability to elicit a meiotic checkpoint arrest is completely eliminated. This selective loss of checkpoint function is supported by a RED1 dosage series and is associated with the loss of most of the cytologically detectable Red1 from the axial element. Our results indicate separable roles for Red1 in building the structural axis of meiotic chromosomes and mounting a sustained recombination checkpoint response.