Project description:Transcriptonal profiling of Leuconostoc gasicomitatum LMG18811T (wild type) grown in MRS medium with or without heme. Mutant LMG18811T::pSIP1333A (mutating cydB gene which is essential in the respiratory chain) grown in MRS with or without heme. Comparing mutant and wildtype with and without heme.
Project description:BackgroundLeuconostoc gelidum and Leuconostoc gasicomitatum have dual roles in foods. They may spoil cold-stored packaged foods but can also be beneficial in kimchi fermentation. The impact in food science as well as the limited number of publicly available genomes prompted us to create pangenomes and perform genomic taxonomy analyses starting from de novo sequencing of the genomes of 37 L. gelidum/L. gasicomitatum strains from our culture collection. Our aim was also to evaluate the recently proposed change in taxonomy as well as to study the genomes of strains with different lifestyles in foods.MethodsWe selected as diverse a set of strains as possible in terms of sources, previous genotyping results and geographical distribution, and included also 10 publicly available genomes in our analyses. We studied genomic taxonomy using pairwise average nucleotide identity (ANI) and calculation of digital DNA-DNA hybridisation (dDDH) scores. Phylogeny analyses were done using the core gene set of 1141 single-copy genes and a set of housekeeping genes commonly used for lactic acid bacteria. In addition, the pangenome and core genome sizes as well as some properties, such as acquired antimicrobial resistance (AMR), important due to the growth in foods, were analysed.ResultsGenome relatedness indices and phylogenetic analyses supported the recently suggested classification that restores the taxonomic position of L. gelidum subsp. gasicomitatum back to the species level as L. gasicomitatum. Genome properties, such as size and coding potential, revealed limited intraspecies variation and showed no attribution to the source of isolation. The distribution of the unique genes between species and subspecies was not associated with the previously documented lifestyle in foods. None of the strains carried any acquired AMR genes or genes associated with any known form of virulence.ConclusionGenome-wide examination of strains confirms that the proposition to restore the taxonomic position of L. gasicomitatum is justified. It further confirms that the distribution and lifestyle of L. gelidum and L. gasicomitatum in foods have not been driven by the evolution of functional and phylogenetic diversification detectable at the genome level.
Project description:Transcriptonal profiling of Leuconostoc gasicomitatum LMG18811T (wild type) grown in MRS medium with or without heme. Mutant LMG18811T::pSIP1333A (mutating cydB gene which is essential in the respiratory chain) grown in MRS with or without heme. Comparing mutant and wildtype with and without heme. Two-condition experiments with wild type and cydB mutant. 1) wild type with heme vs wild type without heme (HVV), 2) wild type with heme vs mutant with heme (HMHV) 3) mutant with heme vs mutant without heme (MHM) 4) wildtype without heme vs mutant without heme (MV).
Project description:Leuconostoc gasicomitatum is a psychrotrophic lactic acid bacterium (LAB) which causes spoilage in cold-stored modified-atmosphere-packaged (MAP) meat products. In addition to the fermentative metabolism, L. gasicomitatum is able to respire when exogenous heme and oxygen are available. In this study, we investigated the respiration effects on growth rate, biomass, gene expression, and volatile organic compound (VOC) production in laboratory media and pork loin. The meat samples were evaluated by a sensory panel every second or third day for 29 days. We observed that functional respiration increased the growth (rate and yield) of L. gasicomitatum in laboratory media with added heme and in situ meat with endogenous heme. Respiration increased enormously (up to 2,600-fold) the accumulation of acetoin and diacetyl, which are buttery off-odor compounds in meat. Our transcriptome analyses showed that the gene expression patterns were quite similar, irrespective of whether respiration was turned off by excluding heme from the medium or mutating the cydB gene, which is essential in the respiratory chain. The respiration-based growth of L. gasicomitatum in meat was obtained in terms of population development and subsequent development of sensory characteristics. Respiration is thus a key factor explaining why L. gasicomitatum is so well adapted in high-oxygen packed meat.
Project description:Comparing of transcriptonal profiling of Leuconostoc gasicomitatum LMG18811T grown in semi-defined medium with different carbon sources (20 mM glucose, ribose, inosine).
Project description:Leuconostoc gelidum subsp. gasicomitatum is a predominant lactic acid bacterium (LAB) in spoilage microbial communities of different kinds of modified-atmosphere packaged (MAP) food products. So far, only one genome sequence of a poultry-originating type strain of this bacterium (LMG 18811(T)) has been available. In the current study, we present the completely sequenced and functionally annotated genome of strain KG16-1 isolated from a vegetable-based product. In addition, six other vegetable-associated strains were sequenced to study possible "niche" specificity suggested by recent multilocus sequence typing. The genome of strain KG16-1 consisted of one circular chromosome and three plasmids, which together contained 2,035 CDSs. The chromosome carried at least three prophage regions and one of the plasmids encoded a galactan degradation cluster, which might provide a survival advantage in plant-related environments. The genome comparison with LMG 18811(T) and six other vegetable strains suggests no major differences between the meat- and vegetable-associated strains that would explain their "niche" specificity. Finally, the comparison with the genomes of other leuconostocs highlights the distribution of functionally interesting genes across the L. gelidum strains and the genus Leuconostoc.