Project description:Background and Aims: Telomere dysfunction can increase tumor initiation by induction of chromosomal instability, but initiated tumor cells need to reactivate telomerase for genome stabilization and tumor progression. However, this concept has not been proven in vivo since appropriate mouse models were lacking. Here, we analyzed hepatocarcinogenesis (i) in a novel mouse model of inducible telomere dysfunction on a telomerase-proficient background, (ii) in telomerase knockout mice with chronic telomere dysfunction (G3 mTerc-/-), and (iii) in wild-type mice with functional telomeres and telomerase. Transient or chronic telomere dysfunction enhanced the rates of chromosomal aberrations during hepatocarcinogenesis, but only telomerase-proficient mice exhibited significantly increased rates of macroscopic tumor formation and cancer cell proliferation in response to telomere dysfunction. In contrast, telomere dysfunction resulted in pronounced accumulation of DNA damage, cell cycle arrest and apoptosis in telomerase-deficient liver tumors. Together, these data provide the first in vivo evidence that transient telomere dysfunction during early and late stages of tumorigenesis can promote chromosomal instability and carcinogenesis in telomerase-proficient mice in the absence of additional genetic checkpoint defects at germline level.
Project description:Background and Aims: Telomere dysfunction can increase tumor initiation by induction of chromosomal instability, but initiated tumor cells need to reactivate telomerase for genome stabilization and tumor progression. However, this concept has not been proven in vivo since appropriate mouse models were lacking. Here, we analyzed hepatocarcinogenesis (i) in a novel mouse model of inducible telomere dysfunction on a telomerase-proficient background, (ii) in telomerase knockout mice with chronic telomere dysfunction (G3 mTerc-/-), and (iii) in wild-type mice with functional telomeres and telomerase. Transient or chronic telomere dysfunction enhanced the rates of chromosomal aberrations during hepatocarcinogenesis, but only telomerase-proficient mice exhibited significantly increased rates of macroscopic tumor formation and cancer cell proliferation in response to telomere dysfunction. In contrast, telomere dysfunction resulted in pronounced accumulation of DNA damage, cell cycle arrest and apoptosis in telomerase-deficient liver tumors. Together, these data provide the first in vivo evidence that transient telomere dysfunction during early and late stages of tumorigenesis can promote chromosomal instability and carcinogenesis in telomerase-proficient mice in the absence of additional genetic checkpoint defects at germline level. RNA from liver tumors derived from from DEN treated TTD+ mice TTD- mice and RNA from normal liver 48h-72h after doxycycline induced transient telomere dysfunction in TTD+ and TTD- liver were isolated and RNA was extracted. Agilent Mouse 4x44K v2 arrays were used. DNA from liver tumors and corrresponding kidney as control derived from from DEN treated TTD+ mice, TTD- mice and mTERC-/- G3 mice was isolated and extracted using Phenol/Chloroform. Agilent Mouse 4x44K and Mouse 1x244K arrays were used.
Project description:Telomere dysfunction induces two types of cellular responses: cellular senescence and apoptosis. Here we analyzed the influence of the cellular level of telomere dysfunction and the role of p53 on induction of apoptosis and senescence in mouse liver using the experimental system of adenoviral mediated, transient expression of a dominant negative version of TRF2 (TRF2DBDM). Gene-profiling experiments identified p53-dependent and p53-independent changes in gene expression in response to telomere deprotection and transcription factors potentially regulating these genes.
Project description:Telomere is a highly refined system for maintaining the stability of linear chromosomes. Most telomeres rely on simple repetitive sequences and telomerase enzymes, but in some species or telomerase-defective situations, alternative telomere lengthening (ALT) mechanism is utilized to protect chromosomal ends. Telomere loss can induce telomere recombination by which specific sequences can be recruited into telomeres. However, canonical telomeric repeat-based telomeres have been found in mammals. Here, we show that mammalian telomeres can also be completely reconstituted using a non-telomeric unique sequence. We found that a specific subtelomeric element, named as mouse template for ALT (mTALT), is utilized for repairing telomeric DNA damage and composing new telomeric sequences in mouse embryonic stem cells. We found a high-level of non-coding mTALT transcript despite the heterochromatic nature of mTALT-based telomere. After ALT activation, the increased HMGN1, a non-histone chromosomal protein, contributed to maintaining telomere stability by regulating telomeric transcriptions. Our findings reveal novel molecular features of potential telomeric sequences which can reconstitute telomeres during cancer formation and evolution.
Project description:Critically short telomeres activate cellular senescence or apoptosis, as mediated by the tumor suppressor p53, but in the absence of this checkpoint response, telomere dysfunction engenders chromosomal aberrations and cancer. Here, analysis of p53-regulated genes activated in the setting of telomere dysfunction identified Zfp365 (ZNF365 in humans) as a direct p53 target that promotes genome stability. Germline polymorphisms in the ZNF365 locus are associated with increased cancer risk, including those associated with telomere dysfunction. On the mechanistic level, ZNF365 suppresses expression of a subset of common fragile sites (CFS) including telomeres. In the absence of ZNF365, defective telomeres engage in aberrant recombination of telomere ends, leading to increased telomere sister chromatid exchange (T-SCE) and formation of anaphase DNA bridges, including ultra-fine DNA bridges (UFB), and ultimately increased cytokinesis failure and aneuploidy. Thus, the p53-ZNF365 axis contributes to genomic stability in the setting of telomere dysfunction. We expressed an inducible p53 allele encoding a p53-estrogen receptor fusion protein (p53ER) that becomes functional upon addition of 4-hydroxytamoxifen (4-OHT) in TKO cells. We chose a time point of 4 hours post-4-OHT induction to catalog potential direct targets.
Project description:Telomere dysfunction drives chromosomal instability (CIN) during the transition from benign adenoma to malignant adenocarcinoma. While CIN provides a mutator mechanism for cancer- relevant genomic events, its role in shaping tumor biology during carcinogenesis is not well understood. Here, we explored the molecular and biological impact of telomere dysfunction and associated CIN in vivo in a faithful model of CRC. In vivo lineage tracing revealed that CIN increased the rate of neoplastic cell clonal expansion through accelerated differentiation of neighboring stem cells, resulting in increased number of adenomas and decreased survival in CIN-high Apcmin mice. Mechanistically, CIN represses EZH2 leading to upregulation of secreted Wnt antagonists, which resulted in a growth advantage to CIN-high neoplastic cells. Correspondingly, pharmacological activation of intrinsic WNT signaling enhanced intestinal stem cells fitness, leading to reduced neoplastic cell clonal expansion and adenoma burden. Thus, the CIN-EZH2-WNT axis enhances intestinal cancer initiation in the nascent tumor microenvironment, providing a preventive strategy for patients harboring germline APC mutations.
Project description:Telomere dysfunction drives chromosomal instability (CIN) during the transition from benign adenoma to malignant adenocarcinoma. While CIN provides a mutator mechanism for cancer- relevant genomic events, its role in shaping tumor biology during carcinogenesis is not well understood. Here, we explored the molecular and biological impact of telomere dysfunction and associated CIN in vivo in a faithful model of CRC. In vivo lineage tracing revealed that CIN increased the rate of neoplastic cell clonal expansion through accelerated differentiation of neighboring stem cells, resulting in increased number of adenomas and decreased survival in CIN-high Apcmin mice. Mechanistically, CIN represses EZH2 leading to upregulation of secreted Wnt antagonists, which resulted in a growth advantage to CIN-high neoplastic cells. Correspondingly, pharmacological activation of intrinsic WNT signaling enhanced intestinal stem cells fitness, leading to reduced neoplastic cell clonal expansion and adenoma burden. Thus, the CIN-EZH2-WNT axis enhances intestinal cancer initiation in the nascent tumor microenvironment, providing a preventive strategy for patients harboring germline APC mutations.
Project description:Telomere dysfunction drives chromosomal instability (CIN) during the transition from benign adenoma to malignant adenocarcinoma. While CIN provides a mutator mechanism for cancer- relevant genomic events, its role in shaping tumor biology during carcinogenesis is not well understood. Here, we explored the molecular and biological impact of telomere dysfunction and associated CIN in vivo in a faithful model of CRC. In vivo lineage tracing revealed that CIN increased the rate of neoplastic cell clonal expansion through accelerated differentiation of neighboring stem cells, resulting in increased number of adenomas and decreased survival in CIN-high Apcmin mice. Mechanistically, CIN represses EZH2 leading to upregulation of secreted Wnt antagonists, which resulted in a growth advantage to CIN-high neoplastic cells. Correspondingly, pharmacological activation of intrinsic WNT signaling enhanced intestinal stem cells fitness, leading to reduced neoplastic cell clonal expansion and adenoma burden. Thus, the CIN-EZH2-WNT axis enhances intestinal cancer initiation in the nascent tumor microenvironment, providing a preventive strategy for patients harboring germline APC mutations.
Project description:Telomere dysfunction drives chromosomal instability (CIN) during the transition from benign adenoma to malignant adenocarcinoma. While CIN provides a mutator mechanism for cancer- relevant genomic events, its role in shaping tumor biology during carcinogenesis is not well understood. Here, we explored the molecular and biological impact of telomere dysfunction and associated CIN in vivo in a faithful model of CRC. In vivo lineage tracing revealed that CIN increased the rate of neoplastic cell clonal expansion through accelerated differentiation of neighboring stem cells, resulting in increased number of adenomas and decreased survival in CIN-high Apcmin mice. Mechanistically, CIN represses EZH2 leading to upregulation of secreted Wnt antagonists, which resulted in a growth advantage to CIN-high neoplastic cells. Correspondingly, pharmacological activation of intrinsic WNT signaling enhanced intestinal stem cells fitness, leading to reduced neoplastic cell clonal expansion and adenoma burden. Thus, the CIN-EZH2-WNT axis enhances intestinal cancer initiation in the nascent tumor microenvironment, providing a preventive strategy for patients harboring germline APC mutations.
Project description:Telomere length control is critical for cellular lifespan and tumor suppression. Telomerase is activated in the inner cell mass of the developing blastocyst to reset telomere reserves and its subsequent silencing in differentiated cells leads to gradual telomere shortening. Here, we report that transcriptional control through cis-regulatory elements minimally impact telomerase regulation as a function of pluripotency. Instead, developmental control of telomerase is largely driven by an alternative splicing event, centered around hTERT exon-2. Skipping of exon-2 triggers hTERT mRNA decay in differentiated cells. Conversely, its retention in pluripotent cells promotes telomerase accumulation. Our study also identifies SON as a regulator of exon-2 alternative splicing and we report a patient with insufficient telomerase and short telomeres and harboring a SON mutation. In summary, our study highlights a critical role for hTERT alternative splicing in the developmental regulation of telomerase and implicates defective splicing in telomere biology disorders.