Project description:Intracranial aneurysms tend to form at bifurcation apices, where flow impingement causes high frictional force (or wall shear stress, WSS) and flow acceleration and deceleration that create positive and negative streamwise gradients in WSS (WSSG), respectively. In vivo, intracranial aneurysms initiate under high WSS and positive WSSG. Little is known about the responses of endothelial cells (ECs) to either positive or negative WSSG under high WSS conditions. We used cDNA microarrays to profile EC gene expression exposed to positive WSSG vs. negative WSSG for 24 hours in a flow chamber with converging and diverging channels, respectively. WSS varied between 3.5 and 28.4 Pa in each gradient channel. GO and biological pathway analysis indicated that positive WSSG favored proliferation, apoptosis, and extracellular matrix processing while decreasing expression of pro-inflammatory genes. A subset of characteristic genes was validated using qPCR: Genes for ADAMTS1, CKAP2 and NCEH1 had higher expression under positive WSSG compared to negative WSSG while TAGLN, THBS1, VCAM1, CCL2, and CSF2 had lower expression. To determine if these patterns of expression are also exhibited in vivo, we tested whether the extracellular matrix related protein ADAMTS1 and proliferation were modulated by positive WSSG during intracranial aneurysm initiation. An aneurysm was induced at the basiliar terminus in rabbits by bilateral carotid ligation. WSSG at the bifurcation was determined by computational fluid dynamic simulations from 3D angiography and mapped on immunofluorescence staining for ADAMTS1 and the proliferation marker, Ki-67. Endothelial ADAMTS1 protein and Ki-67 were significantly higher in regions with positive WSSG compared to adjacent sites where WSSG was negative. Our results indicate that WSSG can elicit distinct gene expression profiles in ECs. Increased matrix processing and high levels of proliferation under positive WSSG could contribute to intracranial aneurysm initiation by causing transient gaps in the endothelium or disrupting EC signals to smooth muscle cells. Time-matched bovine aortic endothelial cells were exposed to positive wall shear stress gradient, negative wall shear stress gradient, and two no gradient samples: uniform WSS of 3.5 Pa and high WSS of 28.4 Pa for 24 hrs in an in vitro flow loop system. RNA was extracted and hybridized on Affymetrix microarrays. There were 12 samples in total, four flow conditions with three replicates each.
Project description:Endothelial Cells Express a Unique Transcriptional Profile under Very High Wall Shear Stress Known to Induce Expansive Arterial Remodeling
Project description:Intracranial aneurysms tend to form at bifurcation apices, where flow impingement causes high frictional force (or wall shear stress, WSS) and flow acceleration and deceleration that create positive and negative streamwise gradients in WSS (WSSG), respectively. In vivo, intracranial aneurysms initiate under high WSS and positive WSSG. Little is known about the responses of endothelial cells (ECs) to either positive or negative WSSG under high WSS conditions. We used cDNA microarrays to profile EC gene expression exposed to positive WSSG vs. negative WSSG for 24 hours in a flow chamber with converging and diverging channels, respectively. WSS varied between 3.5 and 28.4 Pa in each gradient channel. GO and biological pathway analysis indicated that positive WSSG favored proliferation, apoptosis, and extracellular matrix processing while decreasing expression of pro-inflammatory genes. A subset of characteristic genes was validated using qPCR: Genes for ADAMTS1, CKAP2 and NCEH1 had higher expression under positive WSSG compared to negative WSSG while TAGLN, THBS1, VCAM1, CCL2, and CSF2 had lower expression. To determine if these patterns of expression are also exhibited in vivo, we tested whether the extracellular matrix related protein ADAMTS1 and proliferation were modulated by positive WSSG during intracranial aneurysm initiation. An aneurysm was induced at the basiliar terminus in rabbits by bilateral carotid ligation. WSSG at the bifurcation was determined by computational fluid dynamic simulations from 3D angiography and mapped on immunofluorescence staining for ADAMTS1 and the proliferation marker, Ki-67. Endothelial ADAMTS1 protein and Ki-67 were significantly higher in regions with positive WSSG compared to adjacent sites where WSSG was negative. Our results indicate that WSSG can elicit distinct gene expression profiles in ECs. Increased matrix processing and high levels of proliferation under positive WSSG could contribute to intracranial aneurysm initiation by causing transient gaps in the endothelium or disrupting EC signals to smooth muscle cells.
Project description:Continuous-flow left ventricular assist devices commonly lead to aortic regurgitation, which results in decreased pump efficiency and worsening heart failure. We hypothesized that non-physiological wall shear stress and oscillatory shear index alter the abundance of structural proteins in aortic valves of left ventricular assist device (LVAD) patients. Doppler images of aortic valves of patients undergoing heart transplants were obtained. Eight patients had been supported with LVADs, whereas 10 were not. Aortic valve tissue was collected and protein levels were analyzed using mass spectrometry. Echocardiographic images were analyzed and wall shear stress and oscillatory shear index were calculated. The relationship between normalized levels of individual proteins and in vivo echocardiographic measurements was evaluated. Of the 57 proteins of interest, there was a strong negative correlation between levels of 15 proteins and the wall shear stress (R < -0.500, p ? 0.05), and a moderate negative correlation between 16 proteins and wall shear stress (R ?0.500 to ?0.300, p ? 0.05). Gene ontology analysis demonstrated clusters of proteins involved in cellular structure. Proteins negatively correlated with WSS included those with cytoskeletal, actin/myosin, cell-cell junction and extracellular functions. In aortic valve tissue, 31 proteins were identified involved in cellular structure and extracellular junctions with a negative correlation between their levels and wall shear stress. These findings suggest an association between the forces acting on the aortic valve (AV) and leaflet protein abundance, and may form a mechanical basis for the increased risk of aortic leaflet degeneration in LVAD patients.
Project description:The Toll-like receptor (TLR) and peptidoglycan recognition protein 1 (PGLYRP1) genes play key roles in the innate immune systems of mammals. While the TLRs recognize a variety of invading pathogens and induce innate immune responses, PGLYRP1 is directly microbicidal. We used custom allele-specific assays to genotype and validate 220 diallelic variants, including 54 nonsynonymous SNPs in 11 bovine innate immune genes (TLR1-TLR10, PGLYRP1) for 37 cattle breeds. Bayesian haplotype reconstructions and median joining networks revealed haplotype sharing between Bos taurus taurus and Bos taurus indicus breeds at every locus, and we were unable to differentiate between the specialized B. t. taurus beef and dairy breeds, despite an average polymorphism density of one locus per 219 bp. Ninety-nine tagSNPs and one tag insertion-deletion polymorphism were sufficient to predict 100% of the variation at all 11 innate immune loci in both subspecies and their hybrids, whereas 58 tagSNPs captured 100% of the variation at 172 loci in B. t. taurus. PolyPhen and SIFT analyses of nonsynonymous SNPs encoding amino acid replacements indicated that the majority of these substitutions were benign, but up to 31% were expected to potentially impact protein function. Several diversity-based tests provided support for strong purifying selection acting on TLR10 in B. t. taurus cattle. These results will broadly impact efforts related to bovine translational genomics.
Project description:BackgroundWe present here the assembly of the bovine genome. The assembly method combines the BAC plus WGS local assembly used for the rat and sea urchin with the whole genome shotgun (WGS) only assembly used for many other animal genomes including the rhesus macaque.ResultsThe assembly process consisted of multiple phases: First, BACs were assembled with BAC generated sequence, then subsequently in combination with the individual overlapping WGS reads. Different assembly parameters were tested to separately optimize the performance for each BAC assembly of the BAC and WGS reads. In parallel, a second assembly was produced using only the WGS sequences and a global whole genome assembly method. The two assemblies were combined to create a more complete genome representation that retained the high quality BAC-based local assembly information, but with gaps between BACs filled in with the WGS-only assembly. Finally, the entire assembly was placed on chromosomes using the available map information.Over 90% of the assembly is now placed on chromosomes. The estimated genome size is 2.87 Gb which represents a high degree of completeness, with 95% of the available EST sequences found in assembled contigs. The quality of the assembly was evaluated by comparison to 73 finished BACs, where the draft assembly covers between 92.5 and 100% (average 98.5%) of the finished BACs. The assembly contigs and scaffolds align linearly to the finished BACs, suggesting that misassemblies are rare. Genotyping and genetic mapping of 17,482 SNPs revealed that more than 99.2% were correctly positioned within the Btau_4.0 assembly, confirming the accuracy of the assembly.ConclusionThe biological analysis of this bovine genome assembly is being published, and the sequence data is available to support future bovine research.
Project description:In order to simulate the effects of shear stress in regions of the vasculature prone to developing atherosclerosis, we subjected human umbilical vein endothelial cells to reversing shear stress, in order to mimic hemodynamic conditions at the wall of the carotid sinus, a site of complex, reversing blood flow and commonly observed atherosclerosis. We compared the effects of reversing shear stress (time-average 1 dyne/cm2, maximum +11 dynes/cm2, minimum -11 dynes/cm2, 1 Hz), arterial steady shear stress (15 dynes/cm2), and low steady shear stress (1 dyne/cm2) in terms of gene expression, cell proliferation, and monocyte adhesiveness. Microarray analysis revealed most differentially expressed genes were similarly regulated by all three shear stress regimens when compared to static culture. Comparisons of the three shear stress regimens to each other allowed identification of 138 genes regulated by low average shear stress and 22 by fluid reversal. Functional assays indicated that low average shear stress induces increased cell proliferation as compared to high shear stress. Reversing shear stress was the only condition that induced monocyte adhesion. Monocyte adhesion was partially inhibited by incubation of the endothelial cells with ICAM-1 blocking antibody. Increased surface heparin sulfate proteoglycan expression was observed in cells exposed to reversing shear stress. When these cells were treated with heparinase III monocyte adhesion was significantly reduced. Our results suggest that low steady shear stress is the major impetus for differential gene expression and cell proliferation, while reversing flow regulates monocyte adhesion.
Project description:MEK5 is activated by shear stress in large vessel endothelial cells (ECs) and contributes to the suppression of pro-inflammatory changes in the arterial wall. We used microarray analyses of total RNA from MEK5/CA-transduced HDMECs compared to LacZ control-transduced HDMECs to identify distinct classes of several regulated genes, including KLF4, eNOS, and ICAM. We conclude that MEK5 activation by shear stress may modulate inflammatory responses in the microvasculature, and these actions are partly mediated by KLF4. Total RNA was isolated from 8 separate paired (derived from same primary isolate) MEK5/CA and LacZ transduced HDMEC lines
Project description:MEK5 is activated by shear stress in large vessel endothelial cells (ECs) and contributes to the suppression of pro-inflammatory changes in the arterial wall. We used microarray analyses of total RNA from MEK5/CA-transduced HDMECs compared to LacZ control-transduced HDMECs to identify distinct classes of several regulated genes, including KLF4, eNOS, and ICAM. We conclude that MEK5 activation by shear stress may modulate inflammatory responses in the microvasculature, and these actions are partly mediated by KLF4.
Project description:In this study, we characterized the adaptive response of arterial endothelial cells to acute increases in shear stress magnitude in well-defined in vitro settings. Porcine endothelial cells were preconditioned by a basal level shear stress of 15 ± 15 dynes/cm2 at 1 Hz for 24 hours, and an acute increase in shear stress magnitude (30 ± 15 dynes/cm2) was then applied. The transcriptomics studies using microarray identified genes that were sensitive to the elevated shear magnitude. A significant number of the identified genes in our study are previously unknown as sensitive to shear stress. Porcine endothelial cells were preconditioned by a basal level shear stress of 15 ± 15 dynes/cm2 at 1 Hz for 24 hours, and an acute increase in shear stress magnitude (30 ± 15 dynes/cm2) was then applied. Gene expression at multiple time points was measured using microarray.