Project description:This SuperSeries is composed of the following subset Series: GSE37194: Gene expression profiling during interference with PPAR gamma signaling in thoracic aorta GSE37195: Gene expression profiling using exon arrays during interference with PPAR gamma signaling in thoracic aorta Refer to individual Series
Project description:Ligand-mediated activation of the nuclear hormone receptor PPAR gamma lowers blood pressure and improves glucose tolerance in humans. Two naturally occurring mutations (P467L, V290M) in the ligand binding domain of PPAR gamma have been described in humans that lead to severe insulin resistance and hypertension. Experimental evidence suggests that these mutant versions of PPAR gamma act in a dominant negative fashion. To better understand the molecular mechanisms underlying PPAR gamma action in the vasculature, we determined the gene expression patterns in mouse aorta in response to activation or interference with the PPAR gamma signaling pathway. Keywords: time course, dose response
Project description:Pharmacological activation of the transcription factor PPAR gamma lowers blood pressure and improves glucose tolerance in humans. In contrast, naturally occurring mutations (e.g., P467L, V290M) in the ligand binding domain of PPAR gamma in humans leads to severe insulin resistance and early-onset hypertension. Experimental evidence, including whole genome expression profiling, suggests that these mutant versions of PPAR gamma act in a dominant negative manner. Because PPAR gamma is expressed in a variety of cell types and tissues, we generated a transgenic mouse model (SP467L) specifically targeting dominant negative PPAR gamma to the vascular smooth muscle cells in order to determine the action of PPAR gamma in the blood vessel independent of its systemic metabolic actions. In the data set provided herein, we examined the gene expression profile in thoracic aorta from SP467L mice and their control littermates using the Affymetrix mouse exon 1.0 ST array. We generated transgenic mice specifically targeting expression of mutant dominant negative human PPAR gamma (P467L) to vascular smooth muscle using a smooth muscle-specific promoter (smooth muscle myosin heavy chain or SMMHC). Thoracic aortas were isolated from 7 male transgenic mice and 5 non-transgenic littermate controls. Total RNA was prepared using conventional methods and quality was assessed using the Bioanalyzer 2100 (Agilent Technologies). For the microarray hybridizations, each sample corresponded to aorta derived from one mouse. All procedures were conducted at the University of Iowa DNA Core facility using standard Affymetrix protocols. In brief, approximately 50 ng of total RNA was used as input to a two-step amplification procedure (NuGen, http://www.nugeninc.com/) to generate biotin-labeled RNA fragments for hybridization to the Affymetrix mouse exon 1.0 ST array.
Project description:Pharmacological activation of the transcription factor PPAR gamma lowers blood pressure and improves glucose tolerance in humans. In contrast, naturally occurring mutations (e.g., P467L, V290M) in the ligand binding domain of PPAR gamma in humans leads to severe insulin resistance and early-onset hypertension. Experimental evidence, including whole genome expression profiling, suggests that these mutant versions of PPAR gamma act in a dominant negative manner. Because PPAR gamma is expressed in a variety of cell types and tissues, we generated a transgenic mouse model (SP467L) specifically targeting dominant negative PPAR gamma to the vascular smooth muscle cells in order to determine the action of PPAR gamma in the blood vessel independent of its systemic metabolic actions. In the data set provided herein, we examined the gene expression profile in thoracic aorta from SP467L mice and their control littermates using the Affymetrix mouse exon 1.0 ST array.
Project description:Pharmacological activation of the transcription factor PPAR gamma lowers blood pressure and improves glucose tolerance in humans. In contrast, naturally occurring mutations (e.g., P467L, V290M) in the ligand binding domain of PPAR gamma in humans leads to severe insulin resistance and early-onset hypertension. Experimental evidence, including whole genome expression profiling, suggests that these mutant versions of PPAR gamma act in a dominant negative manner. Because PPAR gamma is expressed in a variety of cell types and tissues, we generated a transgenic mouse model (SP467L) specifically targeting dominant negative PPAR gamma to the vascular smooth muscle cells in order to determine the action of PPAR gamma in the blood vessel independent of its systemic metabolic actions. In the data set provided herein, we examined the gene expression profile in thoracic aorta from SP467L mice and their control littermates using the Affymetrix Mouse Genome 430 2.0 array.