Project description:We use the zebrafish embryo model to study the innate immune response against Staphylococcus epidermidis. Therefore, we injected S. epidermidis into the yolk at 2 hpf and took samples at 5 days post injection. This deep sequence study was designed to determine the gene expression profile by Staphylococcus epidermidis infection. RNA was isolated from embryos at 5 days post injection. Wildtypes zebrafish embryos were micro-injected into the yolk (2hpf) with 20 CFU of S. epidermdis O-47 mCherry bacteria suspended in PVP (Polyvinylpyrrolidone), or Non-injected as a control. After injections embryos were transferred into fresh egg water and incubated at 28M-BM-0C. At 5 days post injection 100-200 embryos per group were snap-frozen in liquid nitrogen, and total RNA was isolated using TRIZOL reagent.
Project description:We use the zebrafish embryo model to study the innate immune response against Staphylococcus epidermidis. Therefore, we injected S. epidermidis (and three controls groups) into the yolk at 2 hpf and samples at mutiple timepoints. Gene expression profiles were obtained at 6, 30, 54, 78, 102 and 126 hpi by microarrays. The results show that the gram-positive bacterium S. epidermidis induces a late immune response with a strong response at 102 hpi. This microarray study was designed to determine the gene expression profile during infection with Staphylococcus epidermidis. RNA was isolated from groups of embryos (20) at 6 timepoints during the infection. Wildtypes zebrafish embryos were micro-injected into the yolk (2hpf) with (1) 20 CFU of S. epidermdis O-47 mCherry bacteria suspended in PVP (Polyvinylpyrrolidone), (2) mock-injected with PVP as a control, (3) Needle insertion as control, (4) Non-injected as a control. After injections embryos were transferred into fresh egg water and incubated at 28M-BM-0C. At 8 hpf (6 h post infection), 32 hpf (30 h post infection), 56 hpf (54 h post infection), 80 hpf (78 h post infection), 104 hpf (102 h post infection) or 128 hpf (126 h post infection) twenty embryos per treatment group were snap-frozen in liquid nitrogen, and total RNA was isolated using TRIZOL reagent. All treatment groups were analyzed using a common reference approach.
Project description:Zebrafish (Danio rerio) model system have used widespread vertebrate investigations for genetic and cell biological analyses, and is suitable for small molecular screens such as chemical, toxicity and drug in order to use for human diseases and drug discovery . Recently, These powerful zebrafish model increasingly apply to human metabolic disease such as obesity and diabetes and toxicology. Despite a lot of advantages, proteomics research at zebrafish has received little interest in comparison with genetic and biological research using histology and in situ hybridization. Protein lysine acetylation is one of the most known post-translational modifications with dynamic and reversibly controlled by lysine acetyltransferase such as histone acetyltransferases and lysine deacetylase such as histone deacetylases and sirtuins family.Also, during the past year, global lysine acetylome studies using MS-based proteomics approach was in diverse species such as human, mouse, E. coli, Yeast and plants. Based on global acetylome data, our understanding of the roles of lysine acetylation in various cellular processes has increased. . The aim of this study was to identify Lysine acetylation in zebrafish embryos and determine the homology from Human at modified site level. Here we showed the global lysine acetylation study in Zebrafish embryos using MS-based zebrafish embryos.