Project description:The overall goal of these experiments was to determine how human endothelial cells respond to pathogenic Leptospira interrogans. Leptospira interrogans causes leptospirosis, the most widespread zoonotic infection in the world. A hallmark of leptospirosis is widespread endothelial damage, which in severe cases leads to hemorrhage. In these experiments, we infected two endothelial cell lines with pathogenic Leptospira interrogans serovar Canicola strain Ca12-005, and as controls, with the non-pathogenic Leptospira biflexa serovar Patoc strain Pfra. As additional controls, uninfected cells were also included in the analyses.
Project description:The overall goal of these experiments was to determine how human endothelial cells respond to pathogenic Leptospira interrogans. Leptospira interrogans causes leptospirosis, the most widespread zoonotic infection in the world. A hallmark of leptospirosis is widespread endothelial damage, which in severe cases leads to hemorrhage. In these experiments, we infected two endothelial cell lines with pathogenic Leptospira interrogans serovar Canicola strain Ca12-005, and as controls, with the non-pathogenic Leptospira biflexa serovar Patoc strain Pfra. As additional controls, uninfected cells were also included in the analyses.
Project description:The overall goal of these experiments was to determine how human endothelial cells respond to pathogenic Leptospira interrogans. Leptospira interrogans causes leptospirosis, the most widespread zoonotic infection in the world. A hallmark of leptospirosis is widespread endothelial damage, which in severe cases leads to hemorrhage. In these experiments, we infected two endothelial cell lines with pathogenic Leptospira interrogans serovar Canicola strain Ca12-005, and as controls, with the non-pathogenic Leptospira biflexa serovar Patoc strain Pfra. As additional controls, uninfected cells were also included in the analyses. The cell line used fhere was a microvascular endothelial line, HMEC (Ades et al, 1992. HMEC-1: establishment of an immortalized human microvascular endothelial cell line. J Invest Dermatol. 99:683-690); due to loss of the original analysis files, only raw data files are provided. Infection times were performed at a multiplicity of infection (# bacteria/endothelial cell) of 10 for either 1 hour or 3 hours, after which RNA was harvested and reverse transcribed. Labeled cDNAs were used to probe HEEBO arrays purchased from Microarrays Inc. (Nashville, TN). In each of three biological replicate experiments, for each time point, three comparisons were made. First, the L. interrogans-infected cells were compared to the L. biflexa-infected cells. Second, the L. Interrogans-infected cells were compared to the uninfected cells. Third, the L. biflexa-infected cells were compared to the uninfected cells. A second endothelial cell line,
Project description:The overall goal of these experiments was to determine how human endothelial cells respond to pathogenic Leptospira interrogans. Leptospira interrogans causes leptospirosis, the most widespread zoonotic infection in the world. A hallmark of leptospirosis is widespread endothelial damage, which in severe cases leads to hemorrhage. In these experiments, we infected two endothelial cell lines with pathogenic Leptospira interrogans serovar Canicola strain Ca12-005, and as controls, with the non-pathogenic Leptospira biflexa serovar Patoc strain Pfra. As additional controls, uninfected cells were also included in the analyses. The cell line used was Ea.hy926, a macrovascular line (Edgell, C. J.,et al. 1990. In vitro Cell. & Dev. Biol. 26:1167-1172, and Edgell, C. J., et al. 1983. Proc. Natl. Acad. Sci. 80:3734-3737). Infection times were performed at a multiplicity of infection (# bacteria/endothelial cell) of 10 for either 1 hour or 3 hours, after which RNA was harvested and reverse transcribed. Labeled cDNAs were used to probe HEEBO arrays purchased from Microarrays Inc. (Nashville, TN). In each of three biological replicate experiments, for each time point, three comparisons were made. First, the L. interrogans-infected cells were compared to the L. biflexa-infected cells. Second, the L. Interrogans-infected cells were compared to the uninfected cells. Third, the L. biflexa-infected cells were compared to the uninfected cells. A second endothelial cell line, HMEC (Ades et al, 1992. HMEC-1: establishment of an immortalized human microvascular endothelial cell line. J Invest Dermatol. 99:683-690), which is of microvascular origin, was also used; raw data files are provided separately.
Project description:Pathogenic Leptospira spp. are the causative agents of the zoonotic disease leptospirosis. During infection, Leptospira are confronted with deadly reactive oxygen species (ROS). Withstanding ROS produced by the host innate immunity is an important strategy evolved by pathogenic Leptospira for persisting in and colonizing hosts. The peroxide stress regulator, PerR, represses genes involved in ROS defenses in L. interrogans. We have performed RNA sequencing in WT and perR mutant strains to characterize the L. interrogans adaptive response to hydrogen peroxide. We showed that Leptospira solicit three main peroxidase machineries (catalase, cytochrome C peroxidase and peroxiredoxin) and heme to adapt to peroxide stress as well as canonical chaperones of the heat shock response, and DNA repair. Determining the PerR regulon allowed to identify the PerR-dependent mechanisms of the peroxide adaptive response and has revealed a regulatory network involving other transcriptional regulators, two-component systems and sigma factors as well as non-coding RNAs that putatively orchestrate, in concert with PerR, this adaptive response. Our findings provide comprehensive insight into the mechanisms required by pathogenic Leptospira to overcome infection-related oxidants. This will participate in framing future hypothesis-driven studies to identify and decipher novel virulence mechanisms.
Project description:The Leptospira biflexa rpsL and rpsG genes were sequenced. Although similar in many respects, proteins encoded by these L. biflexa genes had several unusual features when compared with homologous proteins of other organisms. Unlike the rpsL genes of other eubacteria, the L. biflexa rpsL gene is adjacent to a rpoC-like gene.
Project description:Pathogenic Leptospira spp. are the causative agents of the zoonotic disease leptospirosis. During infection, Leptospira are confronted with deadly reactive oxygen species (ROS). Withstanding ROS produced by the host innate immunity is an important strategy evolved by pathogenic Leptospira for persisting in and colonizing hosts. The peroxide stress regulator, PerRA, represses genes involved in ROS defenses in L. interrogans. We have identified an ORF encoding a putative second PerR in pathogenic Leptospira that we named PerRB. We have determined the transcriptomic profil of a single perRB and a double perRAperRB mutants. The concomitant inactivation of perRA and perRB has a pleiotropic effect on the transcriptomic profil of L. interrogans. The lack of both PerRA and PerRB regulators led to the differential expression of several virulence-associated genes and a loss of virulence. Our findings provide new insights into a new regulatory network that controls virulence and host colonization.
Project description:Leptospires are highly motile bacteria that migrate from the breached skin to blood circulation of in human, allowing for their rapid dissemination and subsequent colonization of the liver, lungs, and kidneys. Pathogenic Leptospira contained numerous leucine-rich repeat (LRR) genes compared to non-pathogenic species that acted as virulence factors. The functions of the LRR proteins are still unknown and the relative responses of the host cell provided clear evidence that the regulation of host cell during Leptospirosis. We used microarrays to observation the global gene expression of human kidney epithelial cell (HK2 cell) under the treatment of rLRR20 protein.
Project description:Leptospirosis is a re-emerging zoonosis, a globally important infectious disease, caused by an infection with the genus Leptospira. Leptospirosis is associated with acute kidney injury and progress to CKD due to sustained tubulointerstitial inflammation. Macrophages play a critical role in controlling the bacterial burden and tissue inflammation during the spirochete infections. To understand the molecular mechanisms of leptospia-induced macrophage activation and its role in the inflammatory process, we performed the transcriptome profiles of murine bone marrow-derived macrophages infected with pathogenic and non-pathogenuc Leptospira spp.at a multiplicity of infection of 100 for 2 and 24 hrs, respectively.