Project description:Collagen deposition is a key process during idiopathic pulmonary fibrosis (IPF); however, little is known about the dynamics of collagen formation during disease development. Tissue samples of early stages of human disease are not readily available and it is difficult to identify changes in collagen content, since standard collagen analysis does not distinguish between 'old' and 'new' collagen. Therefore, the current study aimed to (i) investigate the dynamics of new collagen formation in mice using bleomycin-induced lung fibrosis in which newly synthesized collagen was labelled with deuterated water and (ii) use this information to identify genes and processes correlated to new collagen formation from gene expression analysis. Lung fibrosis was induced in female C57BL/6 mice by bleomycin instillation and sacrificed. Animals were sacrificed at 1 to 5 weeks after fibrosis induction. Collagen synthesized during the week before sacrifice was labelled with deuterium by providing mice with deuterated drinking water. After sacrifice, lung tissue was collected for microarray analysis, determination of new collagen formation, and histology. Deuterated water labelling showed a strong increase in new collagen formation already during the first week after fibrosis induction and a complete return to baseline at five weeks. Correlation of new collagen formation data with gene expression data revealed fibrosis specific processes, of which proliferation was an unexpected one. This was confirmed by measuring cell proliferation and collagen synthesis simultaneously using deuterated water incorporation. Furthermore, new collagen formation strongly correlated with gene expression of e.g. elastin, tenascin C, MMP-14, lysyl oxidase, and type V collagen. These data demonstrate, using a novel combination of technologies, that proliferation and extracellular matrix production are correlated to the core process of fibrosis, i.e. the formation of new collagen. In addition, it identified genes directly correlated to fibrosis, thus providing more insight into the aetiology of IPF. Total RNA was obtained from mouse lungs at timepoint 0 as a control (n = 7) or timepoints 1 (n = 7), 2 (n = 6), 3 (n = 6), 4 (n = 6) or 5 (n = 6) weeks after bleomycin-instillation to induce lung fibrosis.
Project description:Bleomycin-induced pulmonary fibrosis in mice mimics major hallmarks of idiopathic pulmonary fibrosis, yet in this model it spontaneously resolves over time. We studied molecular mechanisms of fibrosis resolution and lung repair, focusing on transcriptional and proteomic signatures and the effect of aging. Young (3 months) and old (21 months) mice were treated with Bleomycin or with control saline solution and analyzed transcript and protein expression over 8 weeks (Day 0, 14, 21, 28, 35, 42, 49, 56).
Project description:Bleomycin-induced pulmonary fibrosis in mice mimics major hallmarks of idiopathic pulmonary fibrosis, yet in this model it spontaneously resolves over time. We studied molecular mechanisms of fibrosis resolution and lung repair, focusing on transcriptional and proteomic signatures and the effect of aging. Young (3 months) and old (21 months) mice were treated with Bleomycin or with control saline solution and analyzed transcript and protein expression over 8 weeks (Day 0, 14, 21, 28, 35, 42, 49, 56).
Project description:Collagen deposition is a key process during idiopathic pulmonary fibrosis (IPF); however, little is known about the dynamics of collagen formation during disease development. Tissue samples of early stages of human disease are not readily available and it is difficult to identify changes in collagen content, since standard collagen analysis does not distinguish between 'old' and 'new' collagen. Therefore, the current study aimed to (i) investigate the dynamics of new collagen formation in mice using bleomycin-induced lung fibrosis in which newly synthesized collagen was labelled with deuterated water and (ii) use this information to identify genes and processes correlated to new collagen formation from gene expression analysis. Lung fibrosis was induced in female C57BL/6 mice by bleomycin instillation and sacrificed. Animals were sacrificed at 1 to 5 weeks after fibrosis induction. Collagen synthesized during the week before sacrifice was labelled with deuterium by providing mice with deuterated drinking water. After sacrifice, lung tissue was collected for microarray analysis, determination of new collagen formation, and histology. Deuterated water labelling showed a strong increase in new collagen formation already during the first week after fibrosis induction and a complete return to baseline at five weeks. Correlation of new collagen formation data with gene expression data revealed fibrosis specific processes, of which proliferation was an unexpected one. This was confirmed by measuring cell proliferation and collagen synthesis simultaneously using deuterated water incorporation. Furthermore, new collagen formation strongly correlated with gene expression of e.g. elastin, tenascin C, MMP-14, lysyl oxidase, and type V collagen. These data demonstrate, using a novel combination of technologies, that proliferation and extracellular matrix production are correlated to the core process of fibrosis, i.e. the formation of new collagen. In addition, it identified genes directly correlated to fibrosis, thus providing more insight into the aetiology of IPF.
Project description:Idiopathic pulmonary fibrosis (IPF) is a complex disease involving various cell types. Macrophages are essential in maintenance of physiological homeostasis, wound repair and fibrosis in the lung. Macrophages play a crucial role in repair and remodeling by altering their phenotype and secretory pattern in response to injury. The secretome of induced pluripotent stem cells (iPSC-cm) attenuates injury and fibrosis in bleomycin injured rat lungs. In the current study, we evaluate the effect of iPSC-cm on interstitial macrophage gene expression and phenotype in bleomycin injured rat lungs in vivo. Â iPSC-cm was intratracheally instilled 7 days after bleomycin induced lung injury and assessed 7 days later and single cell isolation was performed. Macrophages were FACS sorted and microarray analysis was performed. We characterized changes in the rat lung interstitial macrophages using transcriptional profiling.
Project description:We conducted fibroblast-specific transcriptome analysis by next generation sequencing in order to investigate qualitative change and activation signatures of lung fibroblasts in bleomycin-induced pulmonary fibrosis. Lung fibroblasts were identified by using reporter mice of collagen-α2(I), in which collagen I-producing fibroblasts were labeled with EGFP. Lungs were dissociated with protease sollution, and single cell suspension were stained with lineage markers (Ter119, CD45, CD31, EpCAM). Lineage- GFP+ cells were sorted out and mRNA was collected. Using serial analysis of gene expression (SAGE) method, we identified 2,973,937 SAGE tags (1,080,798 tags from saline-treated GFP+ fibroblasts and 1,893,139 tags from bleomycin-treated GFP+ fibroblasts). We found that genes related to extracellular matrix construction were highly up-regulated in fibroblasts from belomycin-treated lungs. Moreover, an analysis of mRNA profiles revealed biological functions such as proliferation, invasion, adhesion, and migration were promoted in fibroblasts from bleomycin-treated lung, which recapitulated the role of fibroblasts in the fibrogenesis. These fibroblast-specific gene expression profiles will be important notions in future fibrosis studies. mRNA profiles of Lung fibroblasts from 3 mice at day 14 after saline or bleomycin treatment.