Project description:We perfomed a microRNA microarray on to assess differentially expressed miRNAs in bleomycin-induced lung fibrosis in mice. To induce pulmonary fibrosis, belomycine (Sigma-Aldrich, St Louis, MO) was dissolved and administred intratracheally at a dose of 1.5U/kg body weight. Control animals received saline only. 21 days post bleomycin treatment, mice were sacrificed and lung tissue were collected for RNA extraction and microRNA microarray.
Project description:Bleomycin-induced pulmonary fibrosis in mice mimics major hallmarks of idiopathic pulmonary fibrosis, yet in this model it spontaneously resolves over time. We studied molecular mechanisms of fibrosis resolution and lung repair, focusing on transcriptional and proteomic signatures and the effect of aging. Young (3 months) and old (21 months) mice were treated with Bleomycin or with control saline solution and analyzed transcript and protein expression over 8 weeks (Day 0, 14, 21, 28, 35, 42, 49, 56).
Project description:Bleomycin-induced pulmonary fibrosis in mice mimics major hallmarks of idiopathic pulmonary fibrosis, yet in this model it spontaneously resolves over time. We studied molecular mechanisms of fibrosis resolution and lung repair, focusing on transcriptional and proteomic signatures and the effect of aging. Young (3 months) and old (21 months) mice were treated with Bleomycin or with control saline solution and analyzed transcript and protein expression over 8 weeks (Day 0, 14, 21, 28, 35, 42, 49, 56).
Project description:Pulmonary fibrosis is a disease characterized by inflammatory cell infiltration, scar formation, deposition of extracellular matrix, alveolar epithelial cell injury and hyperplasia. To determine if alterations in microRNA expression contribute to these phenotypes, microRNA expression profiling of the lungs from bleomycin treated C57Bl/6J mice, relative to that of untreated controls, was undertaken. Mice were treated at 8 weeks old with 100 Units/kg of bleomycin delivered subcutaneously with osmotic minipumps. At 42 days post treatment mice were euthanized and lung microRNA isolated. We identified 11 microRNA's to be significantly differentially expressed (FDR threshold of 0.01) in the lungs of bleomycin treated mice and confirmed these data with real time PCR measurements. These included bleomycin upregulated miR-34a, 335-5p, 207, 21, 301a, 146b, 199a-5p, and 449a and bleomycin downregulated miR-151-3p, 26a and 676. We have previously shown that 1558 genes are differentially expressed in the lungs of bleomycin treated mice. Of the 1412 targets of upregulated microRNAs, 142 were confirmed to be downregulated in the gene expression profile (GEP). Of the 583 targets of downregulated microRNAs, 53 were confirmed to be upregulated in the gene expression profile. Pathway analysis of the microRNA targets and GEP overlapping genes indicated that altered microRNA expression is associated with cellular development, cellular growth, cellular proliferation and changed tissue/cell morphology. Specific pathways include HGF signaling, Cholecystokinin/Gastrin-mediated signaling, Endothelin-1 signaling, RAR activation, Phospholipase C signaling and IGF1 signaling. We conclude that altered microRNA expression is a feature of pulmonary fibrosis which putatively influences components of the altered airway disease. Two condition study, C57Bl/6J mice treated with 100 Units/kg bleomycin and untreated controls. Biological replicated n =3 for each group. Left lung tissue.
Project description:There were similarities in the microRNA expression profiles in sheep model and idiopathic pulmonary fibrosis (IPF) suggest that bleomycin induced lung injuries share similar molecular mechanisms associated with the disease IPF
Project description:Pulmonary fibrosis is a disease characterized by inflammatory cell infiltration, scar formation, deposition of extracellular matrix, alveolar epithelial cell injury and hyperplasia. To determine if alterations in microRNA expression contribute to these phenotypes, microRNA expression profiling of the lungs from bleomycin treated C57Bl/6J mice, relative to that of untreated controls, was undertaken. Mice were treated at 8 weeks old with 100 Units/kg of bleomycin delivered subcutaneously with osmotic minipumps. At 42 days post treatment mice were euthanized and lung microRNA isolated. We identified 11 microRNA's to be significantly differentially expressed (FDR threshold of 0.01) in the lungs of bleomycin treated mice and confirmed these data with real time PCR measurements. These included bleomycin upregulated miR-34a, 335-5p, 207, 21, 301a, 146b, 199a-5p, and 449a and bleomycin downregulated miR-151-3p, 26a and 676. We have previously shown that 1558 genes are differentially expressed in the lungs of bleomycin treated mice. Of the 1412 targets of upregulated microRNAs, 142 were confirmed to be downregulated in the gene expression profile (GEP). Of the 583 targets of downregulated microRNAs, 53 were confirmed to be upregulated in the gene expression profile. Pathway analysis of the microRNA targets and GEP overlapping genes indicated that altered microRNA expression is associated with cellular development, cellular growth, cellular proliferation and changed tissue/cell morphology. Specific pathways include HGF signaling, Cholecystokinin/Gastrin-mediated signaling, Endothelin-1 signaling, RAR activation, Phospholipase C signaling and IGF1 signaling. We conclude that altered microRNA expression is a feature of pulmonary fibrosis which putatively influences components of the altered airway disease.