Project description:Total RNA was isolated from different tissues (leaf, stem and flesh, rind and placenta of the fruits) using TRIzol reagent and small RNA libraries were generated from four cucurbit species: bottle gourd (Lagenaria siceraria (accession Grif 1617 collection from India)), Cucurbita moschata (accession Grif 14244 Early Butternut) Cucurbita pepo (accession NSL98075 Table King), and watermelon (Citrullus lanatus var. lanatus) (PI 438676 Charleston Grey) by pooling equimolar amounts of total RNA from the aforesaid tissues. Construction of small RNA libraries from size fractionated RNA was carried out as described previously. In brief, small RNA fractions of 18–28 nt were isolated from 15% denaturing polyacrylamide gels and sequentially ligated to 5′ and 3′ RNA adapters. Small RNAs ligated with adapters were converted to DNA by RT-PCR following Solexa protocol. The final PCR product was gel purified and sequenced by Genome Analyser II (Illumina).
Project description:Total RNA was isolated from different tissues (leaf, stem and flesh, rind and placenta of the fruits) using TRIzol reagent and small RNA libraries were generated from four cucurbit species: bottle gourd (Lagenaria siceraria (accession Grif 1617 collection from India)), Cucurbita moschata (accession Grif 14244 Early Butternut) Cucurbita pepo (accession NSL98075 Table King), and watermelon (Citrullus lanatus var. lanatus) (PI 438676 Charleston Grey) by pooling equimolar amounts of total RNA from the aforesaid tissues. Construction of small RNA libraries from size fractionated RNA was carried out as described previously. In brief, small RNA fractions of 18–28 nt were isolated from 15% denaturing polyacrylamide gels and sequentially ligated to 5? and 3? RNA adapters. Small RNAs ligated with adapters were converted to DNA by RT-PCR following Solexa protocol. The final PCR product was gel purified and sequenced by Genome Analyser II (Illumina). Examination of small RNA transcriptomes in four plants species using Illumina/Solexa GA-II.
Project description:We analyzed the RNA expression profiles of the mutants of four memebrs of Arabidopsis PHR1 family to understand their roles in regulating plant responses to phosphate starvation
Project description:The late blight pathogen, Phytophthora infestans has a broad host range within the Solanaceae family, including yellow potato (Solanum phureja). The disease caused by P. infestans in S. phureja is poorly understood and is a major concern in Colombia. Expressed Sequence Tag (EST) libraries obtained from a normalized library constructed from healthy plant tissue revealed high levels of sequence similarity between S. phureja and S. tuberosum. Then, utilizing Serial Analysis of Gene Expression and high-throughput sequencing (SAGE-Solexa), we characterized yellow potato gene expression during infection by P. infestans. Four-week-old yellow potato plants were inoculated with P. infestans and were collected at 12 and 72 hours post inoculation for RNA extraction. We detected differentially expressed genes by comparing inoculated to non-inoculated and resistant to susceptible plants. The discovery and characterization of the proteins mediating this host–pathogen interaction enable the understanding of the pathosystem and is the key for developing resistant plants. Keywords: SAGE-Solexa, inoculation response, transcript profiling, Solanum phureja, Phytophthora infestans
Project description:We applied Solexa sequencing technology to identify rat microRNA genes in proximal sciatic nerve following sciatic nerve resection. Using Solexa sequencing, computational analysis and Q-PCR verification, 93 novel miRNAs in rats were discovered and identified, of which 42 novel miRNAs were first reported in proximal sciatic nerve of rat and 51 novel miRNAs were produced at days 1, 4, 7 and 14 after sciatic nerve resection. These data provide an important resource relating to the role and regulation of miRNAs for future studies relating to peripheral nerve injury and regeneration. Keywords: Small RNA sequencing
Project description:We applied Solexa sequencing technology to identify rat microRNA genes in dorsal root ganglia (DRGs) following sciatic nerve resection. Using Solexa sequencing, computational analysis and Q-PCR verification, 114 novel miRNAs in rats were discovered and identified, of which 52 novel miRNAs were first reported in rat DRGs and 62 novel miRNAs were produced at days 1, 4, 7 and 14 after sciatic nerve resection. These data provide an important resource relating to the role and regulation of miRNAs for future studies relating to peripheral nerve injury and regeneration.
Project description:We applied Solexa sequencing technology to identify Amphioxus microRNA genes. We identified 113 amphioxus microRNA genes, 55 were conserved across species and coded for 45 nonredundant mature miRNAs, whereas 58 were amphioxus-specific and accounted for 53 mature miRNAs. Analyzing the evolutionary history of amphioxus miRNAs, we found amphioxus possessed many miRNAs that are also found in chordates and vertebrates, suggesting these miRNAs may represent cephalochordate lineage innovation. By detailed comparison of the miRNA phylogenetic histories, we further found that amphioxus is more vertebrate-like than tunicates. Keywords: Small RNA