Project description:A gilthead sea bream (Sparus aurata) microarray platform was developed to identify brain gene expression profiles in response to environmental concentrations of human pharmaceuticals.
Project description:A gilthead sea bream (Sparus aurata) microarray platform was developed to identify brain gene expression profiles in response to environmental concentrations of human pharmaceuticals. Comparative analysis of gene expression profiles was conducted among brain of gilthead seabream exposed to Acetaminophen (APAP; analgesic), Carbamazepine (CBZ; anti-epileptic) and Atenolol (AT; β-blocker). All groups of samples were also compared with brain of control individuals.
Project description:Sparicotylosis is an endemic parasitic disease across the Mediterranean Sea caused by the polyopisthocotylean monogenean Sparycotyle chrysophrii, which affects the gills of gilthead sea bream (Sparus aurata). Current disease-management, mitigation and treatment strategies are scarce against sparicotylosis. In order to successfully develop more efficient therapeutic strategies against this disease, understanding which molecular mechanisms and metabolic pathways are altered in the host is critical. This study aims to elucidate how S. chrysophrii infection modulates giltheadd seea bream physiological status and to identify the main altered biological processes through plasma proteomics of the host.
Project description:Explore the underlying mechanisms-of-action after short-term (24 h) waterborne exposure to low (0.5 μg/L) and high (50 μg/L) gold nanoparticles (AuNP) concentrations in gilthead sea bream.
Project description:Analysis of the gene expression profiles of Sparus aurata head kidney after infection with Photobaterium damselae piscicida. The expression levels of 21,497 sea bream transcripts, on both directions, 24 and 48 hours post-infection, were compared with the levels detected in uninfected individuals.
Project description:We report the proteomic characterization of livers from Sparus aurata exposed to cold temperatures. In this study, mimicking the winter challenge conditions, a 8 week feeding trial was carried out on gilthead sea bream juveniles reared in RAS systems at a temperature ramp made of two phases of four weeks each: a cooling phase from 18°C 8 (t0) to 11°C (t1) and a cold maintenance phase at 11°C (t2). Sparus aurata livers, after exposure to the three temperature phases (t0, t1 and t2), were collected and analyzed using a shotgun proteomics approach based on filter-aided sample preparation followed by tandem mass spectrometry, peptide identification carried out using Sequest-HT as search engine within the Proteome Discoverer informatic platform, and label-free differential analysis. Along the whole trial, sea breams underwent several changes occurring upon thermal stress in liver protein abundance. These occurred mostly during the cooling phase, when catabolic processes were mainly observed. These included protein and lipid degradation and a decrease in protein synthesis and amino acid metabolism. A decrease in protein mediators of oxidative stress protection was also seen. Liver protein profiles showed less marked changes during cold maintenance, although pathways such as the methionine cycle and sugar metabolism were significantly affected. This study provided useful hints on the dynamics and extent of the metabolic shift occurring in sea bream liver with decreasing water temperature, helping the development of feeds aimed at compensating the thermal stress encountered by fish in offshore farming conditions.
Project description:In Sparus aurata, seasonal temperature variations outside the normal thermal range, may trigger physiological responses leading to pathologies and death. In the present study two groups of wild sea bream were exposed for 21 days to two temperature regimes: 16 ± 0.3 °C (control group) and 6.8 ± 0.3 °C (cold-exposed group). Samples were collected during the acute phase (0, 6 and 24 hours after temperature drop) and upon chronic exposure (21 days).
Project description:Two different early developmental stages of gilthead sea bream: i) larvae at 24 hours post-hatching ( Stage 1), and ii) larvae at 96 hours post-hatching (Stage 4), were used for gene expression analysis. For each stage, total RNA was extracted from five (5) independent biological replicates, each consisting of pools of approximately 40-50 larvae. Based on SAM analysis, 1518 genes were differentially expressed between the two stages with a FDR (False Discovery Rate) of 0.0. In this study, we analyzed the gene expression profiles of two early developmental stages of gilthead sea bream using Agilent-016251 Sparus aurata Oligo Microarray platform (10 arrays, no replicate) based on single-colour detection (Cyanine-3 only). Microarrays are scanned with Agilent scanner G2565BA (barcode on the left, DNA on the back surface, scanned through the glass) at a resolution of 5 microns; all slides are scanned twice at two different sensitivity settings (XDRHi 100% and XDRLo 10%); the scanner software creates a unique ID for each pair of XDR scans and saves it to both scan image files. Feature Extraction 9.5 uses XDR ID to link the pairs of scans together automatically when extracting data. The signal left after all the FE processing steps have been completed is ProcessedSignal that contains the Multiplicatively Detrended, Background-Subtracted Signal .