Project description:This SuperSeries is composed of the following subset Series: GSE38152: sibling aHDF-iPSC clones derived from the same fibroblasts GSE38153: aHDF- and PB-iPSC clones from the same individuals Refer to individual Series
Project description:Hepatocytes generated from human induced pluripotent stem cells (hiPSCs) are unprecedented resources for pharmaceuticals and cell therapy. However, little attention has so far been paid to variations among hiPSC lines in terms of their hepatic differentiation. We developed an improved hepatic differentiation protocol and compared multiple hiPSC lines. This comparison indicated that the hepatic differentiation propensity varies among sibling hiPSC clones derived from the same adult human dermal fibroblasts (aHDFs). In addition, hiPSC clones derived from peripheral blood cells (PB-iPSCs) consistently showed good hepatic differentiation efficiency, whereas many hiPSC clones from adult dermal fibroblasts (aHDF-iPSCs) showed poor hepatic differentiation. However, when we compared hiPSCs from blood and dermal fibroblasts from the same individuals, we found that variations in hepatic differentiation were largely attributable to donor differences, rather than to the types of the original cells. In order to understand the molecular mechanisms underlying the observed variations in hepatic differentiation, we performed microarray analyses of sibling aHDF-iPSC clones, and aHDF- and PB-iPSC clones from the same individuals. sibling aHDF-iPSC clones (201B6 and 201B7; derived from the same aHDFs) (1) undifferentiated state (n=4, biological replicate #1-#4) (2) CXCR4-positive cell populations sorted by flowcytometry after 7 days of endodermal differentiation (n=4, biological replicate #1-#4) (3) CXCR4-negative cell populations sorted by flowcytometry after 7 days of endodermal differentiation (n=4, biological replicate #1-#4)
Project description:Hepatocytes generated from human induced pluripotent stem cells (hiPSCs) are unprecedented resources for pharmaceuticals and cell therapy. However, little attention has so far been paid to variations among hiPSC lines in terms of their hepatic differentiation. We developed an improved hepatic differentiation protocol and compared multiple hiPSC lines. This comparison indicated that the hepatic differentiation propensity varies among sibling hiPSC clones derived from the same adult human dermal fibroblasts (aHDFs). In addition, hiPSC clones derived from peripheral blood cells (PB-iPSCs) consistently showed good hepatic differentiation efficiency, whereas many hiPSC clones from adult dermal fibroblasts (aHDF-iPSCs) showed poor hepatic differentiation. However, when we compared hiPSCs from blood and dermal fibroblasts from the same individuals, we found that variations in hepatic differentiation were largely attributable to donor differences, rather than to the types of the original cells. In order to understand the molecular mechanisms underlying the observed variations in hepatic differentiation, we performed microarray analyses of sibling aHDF-iPSC clones, and aHDF- and PB-iPSC clones from the same individuals.
Project description:Hepatocytes generated from human induced pluripotent stem cells (hiPSCs) are unprecedented resources for pharmaceuticals and cell therapy. However, little attention has so far been paid to variations among hiPSC lines in terms of their hepatic differentiation. We developed an improved hepatic differentiation protocol and compared multiple hiPSC lines. This comparison indicated that the hepatic differentiation propensity varies among sibling hiPSC clones derived from the same adult human dermal fibroblasts (aHDFs). In addition, hiPSC clones derived from peripheral blood cells (PB-iPSCs) consistently showed good hepatic differentiation efficiency, whereas many hiPSC clones from adult dermal fibroblasts (aHDF-iPSCs) showed poor hepatic differentiation. However, when we compared hiPSCs from blood and dermal fibroblasts from the same individuals, we found that variations in hepatic differentiation were largely attributable to donor differences, rather than to the types of the original cells. In order to understand the molecular mechanisms underlying the observed variations in hepatic differentiation, we performed microarray analyses of sibling aHDF-iPSC clones, and aHDF- and PB-iPSC clones from the same individuals.
Project description:Hepatocytes generated from human induced pluripotent stem cells (hiPSCs) are unprecedented resources for pharmaceuticals and cell therapy. However, little attention has so far been paid to variations among hiPSC lines in terms of their hepatic differentiation. We developed an improved hepatic differentiation protocol and compared multiple hiPSC lines. This comparison indicated that the hepatic differentiation propensity varies among sibling hiPSC clones derived from the same adult human dermal fibroblasts (aHDFs). In addition, hiPSC clones derived from peripheral blood cells (PB-iPSCs) consistently showed good hepatic differentiation efficiency, whereas many hiPSC clones from adult dermal fibroblasts (aHDF-iPSCs) showed poor hepatic differentiation. However, when we compared hiPSCs from blood and dermal fibroblasts from the same individuals, we found that variations in hepatic differentiation were largely attributable to donor differences, rather than to the types of the original cells. In order to understand the molecular mechanisms underlying the observed variations in hepatic differentiation, we performed microarray analyses of sibling aHDF-iPSC clones, and aHDF- and PB-iPSC clones from the same individuals. Undifferentiated aHDF- and PB-iPSCs from the same individuals (two Parkinson’s disease patients (PD #1 and PD #2) and one adult healthy donor (donor91))
Project description:ATAC-seq samples from 2 species and 2 cell types were generated to study cis-regulatory element evolution. Briefly, previously generated urinary stem cell derived iPS-cells (Homo sapiens) of 2 human individuals and fibroblast derived cynomolgus macaque iPSCs (Macaca fascicularis) of 2 individuals (Geuder et al. 2021) were differentiated to neural progenitor cells via dual-SMAD inhibition as three-dimensional aggregation culture (Chambers et al. 2009; Ohnuki et al. 2014). The NPC lines were cultured in NPC proliferation medium and passaged 2 - 4 times until they were dissociated and subjected to ATAC-seq together with the respective iPSC clones. ATAC-seq libraries were generated using the Omni-ATAC protocol (Corces et al. 2017) with minor modifications.
Project description:Our goal was to demonstrate the similarity between the original keratinocytes and iPSC-derived keratinocytes from the same individual Profiles of original keratinocytes, iPSCs, IPSC-derived keratinocytes, iPSC-derived fibroblasts from a single individual and normal fibroblasts from a second individual were compared
Project description:Analysis of gene expression levels of whole transcripts obtained from two WA09 ES cell cultures, two dermal fibroblast cultures, two lines each for L-iPSCs, F-iPSCs and LF-iPSCs. Total RNA obtained from WA09 ESCs, the dermal fibroblasts from which all iPSCs in the microarray study were derived, two F-iPSC clones, two L-iPSC clones and two LF-iPSC clones on day 100-120 were compared.