Project description:Background: Ependymomas encompass multiple, clinically relevant tumor types based on localization and molecular profiles. Although tumors of the methylation class “spinal ependymoma” (SP-EPN) represent the most common intramedullary neoplasms in children and adults, their developmental origin is ill-defined, molecular data are scarce, and the potential heterogeneity within SP-EPN remains unexplored. The only known recurrent genetic events in SP-EPN are loss of chromosome 22q and NF2 mutations, but neither types and frequency of these alterations nor their clinical meaning have been described in a large, epigenetically defined series. Methods: We mapped SP-EPN transcriptomes (n=76) to developmental atlases of the developing and adult spinal cord to uncover potential developmental origins of these tumors. In addition, transcriptomic, epigenetic (n=234), genetic (n=140), and clinical analyses (n=115) were integrated for a detailed overview on this entity. Results: Integration of transcriptomic ependymoma data with single-cell atlases of the spinal cord identified mature adult ependymal cells to display highest similarities to SP-EPN. Unsupervised hierarchical clustering of tumor data together with integrated analysis of methylation profiles identified two molecular SP-EPN subtypes. Subtype 1 predominantly contained NF2 wild type sequences with regular NF2 expression but revealed more extensive copy number alterations. Subtype 2 harbored previously known germline or sporadic NF2 mutations and was NF2-deficient in most cases, more often showed multilocular disease, and demonstrated a significantly reduced progression-free survival. Conclusion: Based on integrated molecular profiling of a large tumor series we identify two distinct SP-EPN subtypes with important implications for genetic counseling, patient surveillance, and drug development priorities.
Project description:Background: Ependymomas encompass multiple, clinically relevant tumor types based on localization and molecular profiles. Although tumors of the methylation class “spinal ependymoma” (SP-EPN) represent the most common intramedullary neoplasms in children and adults, their developmental origin is ill-defined, molecular data are scarce, and the potential heterogeneity within SP-EPN remains unexplored. The only known recurrent genetic events in SP-EPN are loss of chromosome 22q and NF2 mutations, but neither types and frequency of these alterations nor their clinical meaning have been described in a large, epigenetically defined series. Methods: We mapped SP-EPN transcriptomes (n=76) to developmental atlases of the developing and adult spinal cord to uncover potential developmental origins of these tumors. In addition, transcriptomic, epigenetic (n=234), genetic (n=140), and clinical analyses (n=115) were integrated for a detailed overview on this entity. Results: Integration of transcriptomic ependymoma data with single-cell atlases of the spinal cord identified mature adult ependymal cells to display highest similarities to SP-EPN. Unsupervised hierarchical clustering of tumor data together with integrated analysis of methylation profiles identified two molecular SP-EPN subtypes. Subtype 1 predominantly contained NF2 wild type sequences with regular NF2 expression but revealed more extensive copy number alterations. Subtype 2 harbored previously known germline or sporadic NF2 mutations and was NF2-deficient in most cases, more often showed multilocular disease, and demonstrated a significantly reduced progression-free survival. Conclusion: Based on integrated molecular profiling of a large tumor series we identify two distinct SP-EPN subtypes with important implications for genetic counseling, patient surveillance, and drug development priorities.
Project description:Background: Ependymomas encompass multiple, clinically relevant tumor types based on localization and molecular profiles. Although tumors of the methylation class “spinal ependymoma” (SP-EPN) represent the most common intramedullary neoplasms in children and adults, their developmental origin is ill-defined, molecular data are scarce, and the potential heterogeneity within SP-EPN remains unexplored. The only known recurrent genetic events in SP-EPN are loss of chromosome 22q and NF2 mutations, but neither types and frequency of these alterations nor their clinical meaning have been described in a large, epigenetically defined series. Methods: We mapped SP-EPN transcriptomes (n=76) to developmental atlases of the developing and adult spinal cord to uncover potential developmental origins of these tumors. In addition, transcriptomic, epigenetic (n=234), genetic (n=140), and clinical analyses (n=115) were integrated for a detailed overview on this entity. Results: Integration of transcriptomic ependymoma data with single-cell atlases of the spinal cord identified mature adult ependymal cells to display highest similarities to SP-EPN. Unsupervised hierarchical clustering of tumor data together with integrated analysis of methylation profiles identified two molecular SP-EPN subtypes. Subtype 1 predominantly contained NF2 wild type sequences with regular NF2 expression but revealed more extensive copy number alterations. Subtype 2 harbored previously known germline or sporadic NF2 mutations and was NF2-deficient in most cases, more often showed multilocular disease, and demonstrated a significantly reduced progression-free survival. Conclusion: Based on integrated molecular profiling of a large tumor series we identify two distinct SP-EPN subtypes with important implications for genetic counseling, patient surveillance, and drug development priorities.
Project description:The draft genome sequence (4.84 Mb) of Cecembia lonarensis strain LW9(T), isolated from a water sample (4.5-m depth) from Lonar Lake, a meteorite-created haloalkaline lake in India, is reported. The enzymes produced by these microorganisms need to be stable under alkaline conditions prevailing in its habitat. Such enzymes would be of immense importance for enzymatic processes operating at high pH.
Project description:<p>We compared changes induced by the addition of 100 nM and 5 mM glucose on the proteome and metabolome complements in <em>Synechococcus</em> sp. strains WH8102, WH7803, and BL107 and <em>Prochlorococcus</em> sp. strains MED4, SS120, and MIT9313, grown either under standard light conditions or in darkness. Our results suggested that glucose is metabolized by these cyanobacteria, using primarily the oxidative pentoses and Calvin pathways, while no proof was found for the involvement of the Entner-Doudoroff pathway in this process. We observed differences in the effects of glucose availability, both between genera and between <em>Prochlorococcus</em> MED4 and SS120 strains, which might be related to their specific adaptations to the environment. We found evidence for fermentation in <em>Prochlorococcus</em> sp. strain SS120 and <em>Synechococcus</em> sp. strain WH8102 after 5 mM glucose addition. Our results additionally suggested that marine cyanobacteria can detect nanomolar glucose concentrations in the environment and that glucose might be used to sustain metabolism under darkness. Furthermore, the KaiB and KaiC proteins were also affected in <em>Synechococcus</em> sp. WH8102, pointing to a direct link between glucose assimilation and circadian rhythms in marine cyanobacteria. In conclusion, our study provides a wide overview on the metabolic effects induced by glucose availability in representative strains of the diverse marine picocyanobacteria, providing further evidence for the importance of mixotrophy in marine picocyanobacteria. The <em>Prochlorococcus sp.</em> strain PCC 9511 is genetically identical to MED4</p><p><strong>IMPORTANCE</strong> Glucose uptake by marine picocyanobacteria has been previously described and strongly suggests they are mixotrophic organisms (capable of using energy from the sun to make organic matter, but also to directly use organic matter from the environment when available). However, a detailed analysis of the effects of glucose addition on the proteome and metabolome of these microorganisms had not been carried out. Here, we analyzed three <em>Prochlorococcus</em> sp. and three <em>Synechococcus</em> sp. strains which were representative of several marine picocyanobacterial clades. We observed differential features in the effects of glucose availability, depending on both the genus and strain; our study illuminated the strategies utilized by these organisms to metabolize glucose and showed unexpected links to other pathways, such as circadian regulation. Furthermore, we found glucose addition had profound effects in the microbiome, favoring the growth of coexisting heterotrophic bacteria.</p>
Project description:BACKGROUND: Human SP-A1 and SP-A2, encoded by SFTPA1 and SFTPA2 and their genetic variants differentially impact alveolar macrophage (AM) functions and regulation, including the miRNome. We investigated whether miRNome differences previously observed between AM from SP-A2 and SP-A1/SP-A2 mice are due to continued qualitative differences or a delayed response of mice carrying a single gene. METHODS: Human transgenic (hTG) mice, carrying SP-A2 or both SP-A genes and SP-A-KO mice were exposed to filtered air (FA) or O3. AM miRNA levels, target gene expression and pathways determined 18 h after O3 exposure. RESULTS: We found: (a) Differences in miRNome due to sex, SP-A genotype, and exposure; (b) miRNome of both sexes was largely downregulated by O3 ; co-ex had fewer changed (≥2X) miRNAs than either group. (c) the number and direction of expression of genes with significant changes in males and females in co-ex is almost the opposite of those in SP-A2; (iv) The same pathways were found in the studied groups; (e) O3 exposure attenuated sex differences; a higher number of genotype-dependent and genotype-independent miRNAs was common in both sexes after O3 exposure. CONCLUSION: Qualitative differences between SP-A2 and co-ex persist 18 h post-O3, and O3 attenuates sex differences.