Project description:The main objective of this study is to identify the list of genes differentially expressed between infected with Leishmania braziliensis and non-infected macrophage cultures based on gene expression microarray profiling The dataset is comprised by the expression profile of 6 samples from three independent experiments and each experiment had three technical replicates. 3 of the 6 samples were U937 derived macrophages infected by Leishmania braziliensis and the other 3 were U937 derived macrophages without infection with Leishmania braziliensis. A total of 18 microarrays analysis were performed.
Project description:The main objective of this study is to identify the list of genes differentially expressed between infected with Leishmania braziliensis and non-infected macrophage cultures based on gene expression microarray profiling
Project description:Leishmania (Viannia) braziliensis is a parasite prevalent in Brazil and associated with tegumentary leishmaniasis (TL), including cutaneous (CL) and mucosal (ML) forms. The mechanisms of pathogenesis of TL are not fully understood, including some factors related to the host and parasite interaction in response to infection, and especially about Leishmania RNA Virus 1 (LRV1), an endosymbiont virus parasitizing Leishmania species, particularly triggers ML. Molecular approaches are usually applied to compare situations and to understand these interactions. Here, microarray analysis identified 162 differentially expressed genes in LbLRV1+ vs. LbLRV1- infection, with 126 upregulated genes related to IFN signaling, OAS/RNAse L, vitamin D3, and RIG-I type receptors. Additionally, 36 down-regulated genes were observed. Then, two validation assays were performed to confirm these results (RT-qPCR and Cytometric Bead Array). The main results comprise the differential gene expression in cells infected with LbLRV1+ compared to LbLRV1- and control, with overexpression of various genes in LbLRV1+ cells. Cytokine levels showed no significant differences between LbLRV1+ and LbLRV1-. This study highlighted the activation of the OAS/RNase L signaling pathway and the non-genomic actions of vitamin D3 in LbLRV1+ infection compared to LbLRV1- and control. This research contributes to our understanding of the immune response and molecular pathways involved in Leishmania infections, particularly in the presence of LRV1. We used microarrays to detail the global gene expression program underlying infection of human mnocyte-derived macrophages with LbLRV1-, LbLRV1+ and identified distinct classes of genes upregulated during this process.
Project description:Trained immunity is a phenomenon whereby innate immune cells such as monocytes or macrophages undergo functional reprogramming after exposure to certain microbial components, altering their responses to future exposures. This study profiled the transcriptome of human monocytes trained with Leishmania braziliensis and then re-exposed to lipopolysaccharide.
Project description:We functionally characterized the five predicted PRMTs in Leishmania braziliensis by gene knockout and endogenous protein HA tagging using CRISPR/Cas9 gene editing. We report that R-methylation profiles vary among Leishmania species and across L. braziliensis lifecycle stages, with the peak PRMT expression occurring in promastigotes. A list of PRMT-interacting proteins was obtained in a single coimmunoprecipitation assay using HA-tagged PRMTs, suggesting a network of putative targets of PRMTs and cooperation between the R-methylation writers. Knockout of each L. braziliensis PRMT led to significant changes in global arginine methylation patterns without affecting cell viability. Deletion of either PRMT1 or PRMT3 disrupted most type I PRMT activity, resulting in a global increase in monomethyl arginine levels. Using anti-MMA antibodies, we performed an IP experiment to identify MMA proteins in the parental line, single PRMT1 knockout, PRMT1/PRMT7 double knockout and PRMT1-Addback parasites. The results indicate that R-methylation is modulated across lifecycle stages in L. braziliensis and show possible functional overlap and cooperation among the different PRMTs in targeting proteins. Overall, our data suggest important regulatory roles of these proteins throughout the L. braziliensis life cycle, showing that arginine methylation is important for parasite-host cell interactions. Linked publication: https://doi.org/10.1101/2021.09.22.461376.