Project description:Gut microbiome research is rapidly moving towards the functional characterization of the microbiota by means of shotgun meta-omics. Here, we selected a cohort of healthy subjects from an indigenous and monitored Sardinian population to analyze their gut microbiota using both shotgun metagenomics and shotgun metaproteomics. We found a considerable divergence between genetic potential and functional activity of the human healthy gut microbiota, in spite of a quite comparable taxonomic structure revealed by the two approaches. Investigation of inter-individual variability of taxonomic features revealed Bacteroides and Akkermansia as remarkably conserved and variable in abundance within the population, respectively. Firmicutes-driven butyrogenesis (mainly due to Faecalibacterium spp.) was shown to be the functional activity with the higher expression rate and the lower inter-individual variability in the study cohort, highlighting the key importance of the biosynthesis of this microbial by-product for the gut homeostasis. The taxon-specific contribution to functional activities and metabolic tasks was also examined, giving insights into the peculiar role of several gut microbiota members in carbohydrate metabolism (including polysaccharide degradation, glycan transport, glycolysis and short-chain fatty acid production). In conclusion, our results provide useful indications regarding the main functions actively exerted by the gut microbiota members of a healthy human cohort, and support metaproteomics as a valuable approach to investigate the functional role of the gut microbiota in health and disease.
Project description:The gut microbiome plays an important role in normal immune function and has been implicated in several autoimmune disorders. Here we use high-throughput 16S rRNA sequencing to investigate the gut microbiome in subjects with multiple sclerosis (MS, n=61) and healthy controls (n=43). Alterations in the gut microbiome in MS include increases in the genera Methanobrevibacter and Akkermansia and decreases in Butyricimonas, and correlate with variations in the expression of genes involved in dendritic cell maturation, interferon signaling and NF-kB signaling pathways in circulating T cells and monocytes. Patients on disease-modifying treatment show increased abundances of the genera Prevotella and Sutterella, and decreased Sarcina, compared to untreated patients. MS patients of a second cohort show elevated breath methane compared to controls, consistent with our observation of increased gut Methanobrevibacter in MS in the first cohort. Further study is required to assess whether the observed alterations in the gut microbiome play a role in, or are a consequence of, MS pathogenesis.
Project description:High-calorie diets lead hepatic steatosis and to the development of non-alcoholic fatty liver disease (NAFLD), which can evolve over many years into the inflammatory form non-alcoholic steatohepatits (NASH) posing a risk for the development of hepatocellular carcinoma (HCC). Due to the diet and the liver alteration, the axis between liver and gut is disturbed, resulting in gut microbiome alterations. Consequently, detecting these gut microbiome alterations repre-sents a promising strategy for early NASH and HCC detection. We analyzed medical parame-ters and the fecal metaproteome of 19 healthy controls, 32 NASH, and 29 HCC patients target-ing the discovery of diagnostic biomarkers. Here, NASH and HCC resulted in increased in-flammation status and shifts within the composition of the gut microbiome. Increased abun-dance of kielin/chordin, E3 ubiquitin ligase, and nucleophosmin 1 represented valuable fecal biomarkers indicating disease-related changes in the liver. Whereas a single biomarker failed to separate NASH and HCC, machine learning-based classification algorithms provided 0.86% accuracy in distinguishing between controls, NASH, and HCC. Conclusion: Fecal metaproteomics enables early detection of NASH and HCC by providing single biomarkers and ma-chine learning-based metaprotein panels.
Project description:In this study, we performed a comparative analysis of gut microbiota composition and gut microbiome-derived bacterial extracellular vesicles (bEVs) isolated from patients with solid tumours and healthy controls. After isolating bEVs from the faeces of solid tumour patients and healthy controls, we performed spectrometry analysis of their proteomes and next-generation sequencing (NGS) of the 16S gene. We also investigated the gut microbiomes of faeces from patientsand controls using 16S rRNA sequencing. Machine learning was used to classify the samples into patients and controls based on their bEVs and faecal microbiomes.
Project description:Obesity is a risk factor for Osteoarthritis (OA), the greatest cause of disability in the US. The impact of obesity on OA is driven by systemic inflammation, now understood to be caused by an altered gut microbiome. Oligofructose, a non-digestible prebiotic fiber, can correct the obese gut microbiome, suggesting a novel approach to treat the OA of obesity. Here we report that in the obese murine gut, beneficial Bifidobacteria are lost while key proinflammatory species gain in abundance. A downstream systemic inflammatory signature culminates with accelerated knee OA. Oligofructose supplementation corrects the obese gut microbiome in part by supporting key commensal microflora, particularly Bifidobacterium pseudolongum. This leads to reduced inflammation in the colon, circulation and knee, and protection from OA. This novel recognition of a gut microbiome-OA connection sets the stage for discovery of new OA therapeutics targeting specific microbes inhabiting the intestinal space to inhibit disease pathology.
Project description:Gut microbiota dysbiosis characterizes systemic metabolic alteration, yet its causality is debated. To address this issue, we transplanted antibiotic-free conventional wild-type mice with either dysbiotic (“obese”) or eubiotic (“lean”) gut microbiota and fed them either a NC or a 72%HFD. We report that, on NC, obese gut microbiota transplantation reduces hepatic gluconeogenesis with decreased hepatic PEPCK activity, compared to non-transplanted mice. Of note, this phenotype is blunted in conventional NOD2KO mice. By contrast, lean microbiota transplantation did not affect hepatic gluconeogenesis. In addition, obese microbiota transplantation changed both gut microbiota and microbiome of recipient mice. Interestingly, hepatic gluconeogenesis, PEPCK and G6Pase activity were reduced even once mice transplanted with the obese gut microbiota were fed a 72%HFD, together with reduced fed glycaemia and adiposity compared to non-transplanted mice. Notably, changes in gut microbiota and microbiome induced by the transplantation were still detectable on 72%HFD. Finally, we report that obese gut microbiota transplantation may impact on hepatic metabolism and even prevent HFD-increased hepatic gluconeogenesis. Our findings may provide a new vision of gut microbiota dysbiosis, useful for a better understanding of the aetiology of metabolic diseases. all livers are from NC-fed mice only.
Project description:Title: White adipose tissue inflammation and gut permeability develop prior to NASH development, associated with increased oxidative stress, intrahepatic diacylglycerol and proinflammatory chemokines in the liver of diet-induced obese and hyperinsulinemic Ldlr-/-.Leiden mice Abstract: NAFLD progression from simple steatosis to NASH and fibrosis is driven by an intricate interplay between molecular and cellular mechanisms. These drivers are not limited to the liver itself but also white adipose tissue and gut may contribute. Current knowledge on these drivers is mostly based on studies that investigate these at a single time point (typically end-stage disease). However, such studies provide no insight into the temporal dynamics and chronology, which therefore remain poorly understood. Ldlr-/-.Leiden mice were fed a high-fat diet (HFD) to induce obesity-associated NAFLD and compared to lean controls fed chow. Groups of mice were sacrificed after 8, 16, 28 and 38 weeks to study liver, white adipose tissue, gut and circulating factors to investigate the sequence of pathogenic events in these critical metabolically active organs as well as organ-crosstalk during NAFLD development. Ldlr-/-.Leiden mice on a HFD develop obesity, dyslipidemia and insulin resistance, essentially as observed in obese NASH patients, in this translational context WAT and gut dysfunction precede the development of NASH and liver fibrosis.
Project description:<p>Emerging evidence that the gut microbiota may contribute in important ways to human health and disease has led us and others to hypothesize that both symbiotic and pathological relationships between gut microbes and their host may be key contributors to obesity and the metabolic complications of obesity. Our "Thrifty Microbiome Hypothesis" poses that gut microbiota play a key role in human energy homeostasis. Specifically, constituents of the gut microbial community may introduce a survival advantage to its host in times of nutrient scarcity, promoting positive energy balance by increasing efficiency of nutrient absorption and improving metabolic efficiency and energy storage. However, in the presence of excess nutrients, fat accretion and obesity may result, and in genetically predisposed individuals, increased fat mass may result in preferential abdominal obesity, ectopic fat deposition (liver, muscle), and metabolic complications of obesity (insulin resistance, hypertension, hyperlipidemia). Furthermore, in the presence of excess nutrients, a pathological transition of the gut microbial community may occur, causing leakage of bacterial products into the intestinal lymphatics and portal circulation, thereby inducing an inflammatory state, further aggravating metabolic syndrome traits and accelerating atherosclerosis. This pathological transition and the extent to which antimicrobial leakage occurs and causes inflammatory and other maladaptive sequelae of obesity may also be influenced by host factors, including genetics. In the proposed study, we will directly test the Thrifty Microbiome Hypothesis by performing detailed genomic and functional assessment of gut microbial communities in intensively phenotyped and genotyped human subjects before and after intentional manipulation of the gut microbiome. To address these hypotheses, five specific aims are proposed: (1) enroll three age- and sex-matched groups from the Old Order Amish: (i) 50 obese subjects (BMI > 30 kg/m2) with metabolic syndrome, (ii) 50 obese subjects (BMI > 30 kg/m2) without metabolic syndrome, and (iii) 50 non-obese subjects (BMI < 25 kg/m2) without metabolic syndrome and characterize the architecture of the gut microbiota from the subjects enrolled in this study by high-throughput sequencing of 16S rRNA genes; (2) characterize the gene content (metagenome) to assess the metabolic potential of the gut microbiota in 75 subjects to determine whether particular genes or pathways are correlated with disease phenotype; (3) characterize the transcriptome in 75 subjects to determine whether differences in gene expression in the gut microbiota are correlated with disease phenotype, (4) determine the effect of manipulation of the gut microbiota with antibiotics on energy homeostasis, inflammation markers, and metabolic syndrome traits in 50 obese subjects with metabolic syndrome and (5) study the relationship between gut microbiota and metabolic and cardiovascular disease traits, weight change, and host genomics in 1,000 Amish already characterized for these traits and in whom 500K Affymetrix SNP chips have already been completed. These studies will provide our deepest understanding to date of the role of gut microbes in terms of 'who's there?', 'what are they doing?', and 'how are they influencing host energy homeostasis, obesity and its metabolic complications? PUBLIC HEALTH RELEVANCE: This study aims to unravel the contribution of the bacteria that normally inhabit the human gastrointestinal tract to the development of obesity, and its more severe metabolic consequences including cardiovascular disease, insulin resistance and Type II diabetes. We will take a multidisciplinary approach to study changes in the structure and function of gut microbial communities in three sets of Old Order Amish patients from Lancaster, Pennsylvania: obese patients, obese patients with metabolic syndrome and non-obese individuals. The Old Order Amish are a genetically closed homogeneous Caucasian population of Central European ancestry ideal for genetic studies. These works have the potential to provide new mechanistic insights into the role of gut microflora in obesity and metabolic syndrome, a disease that is responsible for significant morbidity in the adult population, and may ultimately lead to novel approaches for prevention and treatment of this disorder.</p>