Project description:The gut microbiome plays an important role in normal immune function and has been implicated in several autoimmune disorders. Here we use high-throughput 16S rRNA sequencing to investigate the gut microbiome in subjects with multiple sclerosis (MS, n=61) and healthy controls (n=43). Alterations in the gut microbiome in MS include increases in the genera Methanobrevibacter and Akkermansia and decreases in Butyricimonas, and correlate with variations in the expression of genes involved in dendritic cell maturation, interferon signaling and NF-kB signaling pathways in circulating T cells and monocytes. Patients on disease-modifying treatment show increased abundances of the genera Prevotella and Sutterella, and decreased Sarcina, compared to untreated patients. MS patients of a second cohort show elevated breath methane compared to controls, consistent with our observation of increased gut Methanobrevibacter in MS in the first cohort. Further study is required to assess whether the observed alterations in the gut microbiome play a role in, or are a consequence of, MS pathogenesis.
Project description:This study demonstrates the usefulness of the API by generating a baseline gut microbiota profile of a healthy population and estimating reference intervals for the functional abundance of manually selected KEGG pathways. API facilitates microbiome research by providing dynamic and customizable tools for estimating reference intervals for gut microbiota functional abundances. Through the API, researchers can rapidly generate gut microbiota functional profiles of healthy populations to use as a baseline for comparison. The API also allows users to manually select specific KEGG pathways and estimate reference intervals for the functional abundance of those pathways. By generating these customized reference intervals, researchers can better understand the expected range of gut microbiota functions in healthy individuals. API enables microbiome studies to go beyond simple taxonomic profiling and delve deeper into the functional potential of gut microbiome communities. In summary, API represents a valuable tool for microbiome researchers that enhances the ability to elucidate connections between gut microbial functions and human health.
Project description:In this study, we performed a comparative analysis of gut microbiota composition and gut microbiome-derived bacterial extracellular vesicles (bEVs) isolated from patients with solid tumours and healthy controls. After isolating bEVs from the faeces of solid tumour patients and healthy controls, we performed spectrometry analysis of their proteomes and next-generation sequencing (NGS) of the 16S gene. We also investigated the gut microbiomes of faeces from patientsand controls using 16S rRNA sequencing. Machine learning was used to classify the samples into patients and controls based on their bEVs and faecal microbiomes.
Project description:The gut microbiome can impact brain health and is altered in Parkinson’s disease (PD) patients. The vermiform appendix is a lymphoid tissue implicated in the storage and regulation of the gut microbiome. Here, we investigate changes in the functional microbiome in the appendix of PD patients relative to controls by metatranscriptomic analysis. In the PD appendix, we find microbial dysbiosis affecting lipid metabolism, particularly an upregulation of bacteria responsible for secondary bile acid synthesis. Likewise, proteomic and transcript analysis in the PD gut corroborates a disruption in cholesterol homeostasis and lipid catabolism. Bile acid analysis in the PD appendix reveals an increase in the microbially-derived, toxic secondary bile acids deoxycholic acid (DCA) and lithocholic acid (LCA). Synucleinopathy in mice induces similar microbiome alterations to those of PD patients and heightens microbial changes to gut inflammation. As observed in PD, the mouse model of synucleinopathy has elevated DCA and LCA. Raised levels of DCA and LCA can lead to liver injury, and an analysis of blood markers of liver dysfunction shows evidence of biliary abnormalities in PD patients, including elevated alkaline phosphatase and bilirubin. Increased bilirubin levels are also evident before PD diagnosis, in individuals at-risk of developing PD. In sum, microbially-derived toxic bile acids are heightened in PD and biliary changes may even precede the onset of overt motor symptoms.
Project description:Gut microbial profiling of uterine fibroids (UFs) patients comparing control subjects. The gut microbiota was examined by 16S rRNA quantitative arrays and bioinformatics analysis. The goal was to reveal alterations in the gut microbiome of uterine fibroids patients.
Project description:We explore whether a low-energy diet intervention for Metabolic dysfunction-associated steatohepatitis (MASH) improves liver disease by means of modulating the gut microbiome. 16 individuals were given a low-energy diet (880 kcal, consisting of bars, soups, and shakes) for 12 weeks, followed by a stepped re-introduction to whole for an additional 12 weeks. Stool samples were obtained at 0, 12, and 24 weeks for microbiome analysis. Fecal microbiome were measured using 16S rRNA gene sequencing. Positive control (Zymo DNA standard D6305) and negative control (PBS extraction) were included in the sequencing. We found that low-energy diet improved MASH disease without lasting alterations to the gut microbiome.
Project description:Intervention1: NIL: NIL
Control Intervention1: NIL: NIL
Primary outcome(s): 1). Comparative difference in gut microbial signatures in healthy individuals, colorectal (CRC) and ulcerative colitis (UC) patients using BugSpeaks microbiome analytical platform
2). Comparative difference in stool metabolites in healthy individuals, CRC and UC patients
Timepoint: Screening Visit (Up to day 3) Baseline Visit- Day 0
Project description:The gut microbiome can impact brain health and is altered in Parkinson’s disease (PD) patients. The vermiform appendix is a lymphoid tissue implicated in the storage and regulation of the gut microbiome. Here, we investigate changes in the functional microbiome in the appendix of PD patients relative to controls by metatranscriptomic analysis. In the PD appendix, we find microbial dysbiosis affecting lipid metabolism, particularly an upregulation of bacteria responsible for secondary bile acid synthesis. Likewise, proteomic and transcript analysis in the PD gut corroborates a disruption in cholesterol homeostasis and lipid catabolism. Bile acid analysis in the PD appendix reveals an increase in the microbially-derived, toxic secondary bile acids deoxycholic acid (DCA) and lithocholic acid (LCA). Synucleinopathy in mice induces similar microbiome alterations to those of PD patients and heightens microbial changes to gut inflammation. As observed in PD, the mouse model of synucleinopathy has elevated DCA and LCA. Raised levels of DCA and LCA can lead to liver injury, and an analysis of blood markers of liver dysfunction shows evidence of biliary abnormalities in PD patients, including elevated alkaline phosphatase and bilirubin. Increased bilirubin levels are also evident before PD diagnosis, in individuals at-risk of developing PD. In sum, microbially-derived toxic bile acids are heightened in PD and biliary changes may even precede the onset of overt motor symptoms.