Project description:Time series microarray analysis on the photosynthetic ciliate was conducted using an oligochip containing 15,654 genes designed from Teleaulax amphioxeia ESTs
Project description:The marine mixotrophic ciliate Mesodinium rubrum is known to acquire chloroplasts, mitochondria, nucleomorphs, and nucleus from its cryptophyte prey, particularly from species in the genera, Geminigera and Teleaulax. The sequestered prey nucleus and chloroplasts are considered to support photosynthesis of M. rubrum. In addition, recent studies have shown enlargement of the retained prey nucleus in starved M. rubrum and have inferred that enlargement results from the fusion of ingested prey nuclei. Thus far, however, little is known about the mechanism underlying the enlargement of the prey nucleus in M. rubrum. Here, we conducted starvation and refeeding studies to monitor the fate of prey nuclei acquired by M. rubrum when feeding on Teleaulax amphioxeia and to explore the influence of the retained prey nucleus on photosynthesis of M. rubrum. Results indicate that enlargement of the prey nucleus does not result from fusion of nuclei. Furthermore, the enlarged prey nucleus does not appear to divide during cell division of M. rubrum. The presence of a prey nucleus significantly affected photosynthetic performance of M. rubrum, while the number of retained chloroplasts had little influence on rate of carbon fixation. We interpret results within the context of a model that considers the dynamics of ingested prey nuclei during division of M. rubrum.
Project description:BACKGROUND:Organelle retention is a form of mixotrophy that allows organisms to reap metabolic benefits similar to those of photoautotrophs through capture of algal prey and sequestration of their plastids. Mesodinium rubrum is an abundant and broadly distributed photosynthetic marine ciliate that steals organelles from cryptophyte algae, such as Geminigera cryophila. M. rubrum is unique from most other acquired phototrophs because it also steals a functional nucleus that facilitates genetic control of sequestered plastids and other organelles. We analyzed changes in G. cryophila nuclear gene expression and transcript abundance after its incorporation into the cellular architecture of M. rubrum as an initial step towards understanding this complex system. METHODS:We compared Illumina-generated transcriptomes of the cryptophyte Geminigera cryophila as a free-living cell and as a sequestered nucleus in M. rubrum to identify changes in protein abundance and gene expression. After KEGG annotation, proteins were clustered by functional categories, which were evaluated for over- or under-representation in the sequestered nucleus. Similarly, coding sequences were grouped by KEGG categories/pathways, which were then evaluated for over- or under-expression via read count strategies. RESULTS:At the time of sampling, the global transcriptome of M. rubrum was dominated (~58-62 %) by transcription from its stolen nucleus. A comparison of transcriptomes from free-living G. cryophila cells to those of the sequestered nucleus revealed a decrease in gene expression and transcript abundance for most functional protein categories within the ciliate. However, genes coding for proteins involved in photosynthesis, oxidative stress reduction, and several other metabolic pathways revealed striking exceptions to this general decline. CONCLUSIONS:Major changes in G. cryophila transcript expression after sequestration by M. rubrum and the ciliate's success as a photoautotroph imply some level of control or gene regulation by the ciliate and at the very least reflect a degree of coordination between host and foreign organelles. Intriguingly, cryptophyte genes involved in protein transport are significantly under-expressed in M. rubrum, implicating a role for the ciliate's endomembrane system in targeting cryptophyte proteins to plastid complexes. Collectively, this initial portrait of an acquired transcriptome within a dynamic and ecologically successful ciliate highlights the remarkable cellular and metabolic chimerism of this system.
Project description:Kleptoplastic mixotrophic species of the genus Dinophysis are cultured by feeding with the ciliate Mesodinium rubrum, itself a kleptoplastic mixotroph, that in turn feeds on cryptophytes of the Teleaulax/Plagioselmis/Geminigera (TPG) clade. Optimal culture media for phototrophic growth of D. acuminata and D. acuta from the Galician Rías (northwest Spain) and culture media and cryptophyte prey for M.rubrum from Huelva (southwest Spain) used to feed Dinophysis, were investigated. Phototrophic growth rates and yields were maximal when D. acuminata and D. acuta were grown in ammonia-containing K(-Si) medium versus f/2(-Si) or L1(-Si) media. Dinophysis acuminata cultures were scaled up to 18 L in a photobioreactor. Large differences in cell toxin quota were observed in the same Dinophysis strains under different experimental conditions. Yields and duration of exponential growth were maximal for M. rubrum from Huelva when fed Teleaulax amphioxeia from the same region, versus T. amphioxeia from the Galician Rías or T. minuta and Plagioselmis prolonga. Limitations for mass cultivation of northern Dinophysis strains with southern M. rubrum were overcome using more favorable (1:20) Dinophysis: Mesodinium ratios. These subtleties highlight the ciliate strain-specific response to prey and its importance to mass production of M. rubrum and Dinophysis cultures.
Project description:The development of Dinophysis populations, producers of diarrhetic shellfish toxins, has been attributed to both abiotic (e.g., water column stratification) and biotic (prey availability) factors. An important process to consider is mixotrophy of the Dinophysis species, which is an intensive feeding of the Mesodinium species for nutrients and a benefit from kleptochloroplasts. During the feeding process, the nutritional status in the environment changes due to the preference of Mesodinium and/or Dinophysis for different nutrients, prey cell debris generated by sloppy feeding, and their degradation by micro-organisms changes. However, there is little knowledge about the role of the bacterial community during the co-occurrence of Mesodinium and Dinophysis and how they directly or indirectly interact with the mixotrophs. In this study, laboratory experiments were performed to characterize the environmental changes including those of the prey present, the bacterial communities, and the ambient dissolved nutrients during the co-occurrence of Mesodinium rubrum and Dinophysis acuminata. The results showed that, during the incubation of the ciliate prey Mesodinium with its predator Dinophysis, available dissolved nitrogen significantly shifted from nitrate to ammonium especially when the population of M. rubrum decayed. Growth phases of Dinophysis and Mesodinium greatly affected the structure and composition of the bacterial community. These changes could be mainly explained by both the changes of the nutrient status and the activity of Dinophysis cells. Dinophysis feeding activity also accelerated the decline of M. rubrum and contamination of cultures with okadaic acid, dinophysistoxin-1, and pectenotoxin-2, but their influence on the prokaryotic communities was limited to the rare taxa (<0.1%) fraction. This suggests that the interaction between D. acuminata and bacteria is species-specific and takes place intracellularly or in the phycosphere. Moreover, a majority of the dominant bacterial taxa in our cultures may also exhibit a metabolic flexibility and, thus, be unaffected taxonomically by changes within the Mesodinium-Dinophysis culture system.