Project description:Background & Aims: Irritable bowel syndrome (IBS) is a disorder characterized by chronic abdominal pain and is linked to post-inflammatory and stress-correlated factors that cause changes in the perception of visceral events. Increased evidence indicates that probiotic bacteria may be useful in treating IBS. Our aims were to evaluate the efficacy of treatment with VSL#3, a mixture of 8 probiotic bacteria strains, in the neonatal maternal separation (NMS)-induced visceral hypersensitivity rat model and to determine whether it modulates the colonic expression of pain-related genes. Methods: Male NMS pups were treated orally with placebo or VSL#3 at days 3-60, while normal, not separated rats were used as control. After 60 days from birth, perception of painful sensation induced by colorectal distension (CRD) was measured by assessing the abdominal withdrawal reflex (score 0-4). The colonic gene expression analysis was assessed by using Agilent Whole Rat Genome Oligo Microarrays. Results: NMS rats exhibited both hyperalgesia and allodynia when compared with controls. VSL#3 showed a potent analgesic effect on CRD-induced pain without modifying colorectal compliance. The microarray analysis demonstrated that NMS rats had both over- and downregulation of several genes involved in inflammatory and painful processes and VSL#3 was able to counteract these alterations. Conclusions: This study indicates that VSL#3 is effective in reducing visceral pain in an experimental model of IBS by induction or suppression of pain-modulating genes. These observations provide support for the use of VSL#3 in the treatment of painful conditions related to IBS. The dataset comprises 12 samples divided into three sample groups each representing a certain treatment condition of male rats.
Project description:Background & Aims: Irritable bowel syndrome (IBS) is a disorder characterized by chronic abdominal pain and is linked to post-inflammatory and stress-correlated factors that cause changes in the perception of visceral events. Increased evidence indicates that probiotic bacteria may be useful in treating IBS. Our aims were to evaluate the efficacy of treatment with VSL#3, a mixture of 8 probiotic bacteria strains, in the neonatal maternal separation (NMS)-induced visceral hypersensitivity rat model and to determine whether it modulates the colonic expression of pain-related genes. Methods: Male NMS pups were treated orally with placebo or VSL#3 at days 3-60, while normal, not separated rats were used as control. After 60 days from birth, perception of painful sensation induced by colorectal distension (CRD) was measured by assessing the abdominal withdrawal reflex (score 0-4). The colonic gene expression analysis was assessed by using Agilent Whole Rat Genome Oligo Microarrays. Results: NMS rats exhibited both hyperalgesia and allodynia when compared with controls. VSL#3 showed a potent analgesic effect on CRD-induced pain without modifying colorectal compliance. The microarray analysis demonstrated that NMS rats had both over- and downregulation of several genes involved in inflammatory and painful processes and VSL#3 was able to counteract these alterations. Conclusions: This study indicates that VSL#3 is effective in reducing visceral pain in an experimental model of IBS by induction or suppression of pain-modulating genes. These observations provide support for the use of VSL#3 in the treatment of painful conditions related to IBS.
Project description:Distinct representation of visceral and somatic pain by unique PVH neuronal ensembles and suggested that PVH as a pain sorting center that distinctly processes visceral and somatic pain, providing a new framework for comprehending how the brain processes nociceptive information and identifying potential molecular targets for specific pain processing.
Project description:Staphylococcus aureus is the leading global cause of bacterial infection-associated mortality, as vaccine development has been elusive. S. aureus alpha-toxin (Hla) is an essential virulence factor in disease. In children, the anti-Hla neutralizing antibody response is the only known correlate of human protective immunity. We demonstrate that the anti-Hla response is limited in the first 2 years of life, illuminating a vaccine-targetable population. We assessed whether Hla antigenic variants would enhance vaccine-mediated immunity in neonatal mice. We identified a variant (HlaH35L/R66C/E70C, HlaHRE) that elicits a nearly 100-fold increase in the neutralizing anti-Hla antibody response compared to other candidate Hla antigens. HlaHRE immunization durably protects against skin and soft tissue infection, enhancing the T follicular helper response and germinal center B cell response. Protective immunity was also conferred to offspring following maternal immunization with HlaHRE. These findings thereby define a novel path for universal S. aureus vaccine development at the maternal-infant interface.
Project description:Maternal diabetes is associated with a wide range of fetal and neonatal adverse effects including pulmonary disturbances. To investigate the effects of maternal diabetes on neonatal lung gene expression profile, we performed microarray analysis on the lungs of 14-day-old rats born to diabetic dam. Keywords: disease state analysis Four neonatal lungs exposed to maternal diabetes and four control lungs were analyzed.