Project description:ATF4 is a fasting-induced trascription factor that promotes skeletal muscle atrophy. The goal of these studies was to determine how of loss of ATF4 affects skeletal muscle mRNA expression. For additional details see Ebert et al, Stress-Induced Skeletal Muscle Gadd45a Expression Reprograms Myonuclei and Causes Muscle Atrophy. JBC epub. June 12, 2012. Muscle-specfic ATF4 knockout (ATF4 mKO) mice and littermate controls were fasted for 24 hours and then tibialis anterior muscles were harvested. mRNA levels in ATF4 mKO muscles were normalized to levels in littermate control muscles.
Project description:For additional details see Ebert et al, Identification and Small Molecule Inhibition of an ATF4-dependent Pathway to Age-related Skeletal Muscle Weakness and Atrophy. Quadriceps femoris muscles were harvested from 22-month-old muscle-specfic ATF4 knockout (ATF4 mKO) mice and littermate controls. mRNA levels in ATF4 mKO muscles were normalized to levels in littermate control muscles.
Project description:Gadd45a is a stress-induced protein that causes skeletal muscle atrophy. The goal of these studies was to determine the effects of Gadd45a overexpression on mRNA levels in mouse skeletal muscle. For additional details see Ebert et al, Stress-Induced Skeletal Muscle Gadd45a Expression Reprograms Myonuclei and Causes Muscle Atrophy. JBC epub. June 12, 2012. Tibialis anterior (TA) muscles from muscle-specfic ATF4 knockout mice (ATF4 mKO) were transfected with either 20 mg empty plasmid (pcDNA3) (left TA) or 20 mg pCMV-FLAG-Gadd45a (right TA) and harvested 7 days later. mRNA levels in Gadd45a-transfected muscles were normalized to levels in control transfected muscles.
Project description:Fasting increases the level of skeletal muscle ATF4 mRNA, which promotes skeletal myofiber atrophy. To begin to determine the mechanism of ATF4-mediated myofiber atrophy, we compared the effects of fasting and ATF4 overexpression on global skeletal muscle mRNA expression in C57BL/6 mice.
Project description:Fasting increases the level of skeletal muscle ATF4 mRNA, which promotes skeletal myofiber atrophy. To begin to determine the mechanism of ATF4-mediated myofiber atrophy, we compared the effects of fasting and ATF4 overexpression on global skeletal muscle mRNA expression in C57BL/6 mice.
Project description:ATF4 is a bZIP transcription factor that that promotes skeletal muscle atrophy. The goal of these studies was to determine the effects of ATF4 overexpression on mRNA levels in differentiated C2C12 myotubes. For additional details see Ebert et al, Stress-Induced Skeletal Muscle Gadd45a Expression Reprograms Myonuclei and Causes Muscle Atrophy. JBC epub. June 12,2012 C2C12 myotubes were infected with adenovirus co-expressing eGFP and ATF4-FLAG. Control myotubes were infected with adenovirus co-expressing eGFP and a transcriptionally inactive ATF4 construct (ATF4∆bZIP).