Project description:Background: The ability of an organism to repair DNA damage is implicated in carcinogenesis and aging. Interestingly expression profiling of Nucleotide Excision Repair (NER) deficient segmental progeroid mice revealed gene expression changes resembling these observed in aged wild type animals. Our previous transcriptional profiling of NER-deficient C. elegans xpa-1 mutant showed overrepresentation of genes involved in lifespan determination and upregulation of several oxidative stress response genes (Fensgard et al. Aging 2010). However, since an independent study performed by Boyd and coworkers (Boyd et al. Mut Res 2010) showed limited number of changes in xpa-1 mutant. Therefore to independently validate that transcriptome modulation does take place in xpa-1 mutants, we performed another global gene expression profiling based on 5 independent biological replicates allowing more stringent statistical analysis. Results: In agreement with what was observed by Boyd and coworkers (Boyd et al. Mut Res 2010) current transcriptomic analysis detected fewer changes in xpa-1 C. elegans mutant with only a few genes regulated more than 4-fold. Nevertheless, Gene Ontology (GO) enrichment analysis performed on statistically significantly regulated unique protein coding genes revealed overrepresentation of aging gene cluster. Moreover, as before, overexpression of several genes involved in oxidative stress responses was detected. Conclusion: More stringent statistical analysis predictably resulted in a smaller number of regulated genes and thus overrepresented GOs comparing to the earlier paper. However, major conclusions of the previous study can be still regarded as valid, as the most important aging GO is still overrepresented. Background: The ability of an organism to repair DNA damage is implicated in carcinogenesis and aging. Interestingly expression profiling of Nucleotide Excision Repair (NER) deficient segmental progeroid mice revealed gene expression changes resembling these observed in aged wild type animals. Our previous transcriptional profiling of NER-deficient C. elegans xpa-1 mutant showed overrepresentation of genes involved in lifespan determination and upregulation of several oxidative stress response genes (Fensgard et al. Aging 2010). However, since an independent study performed by Boyd and coworkers (Boyd et al. Mut Res 2010) showed limited number of changes in xpa-1 mutant. Therefore to independently validate that transcriptome modulation does take place in xpa-1 mutants, we performed another global gene expression profiling based on 5 independent biological replicates allowing more stringent statistical analysis. Results: In agreement with what was observed by Boyd and coworkers (Boyd et al. Mut Res 2010) current transcriptomic analysis detected fewer changes in xpa-1 C. elegans mutant with only a few genes regulated more than 4-fold. Nevertheless, Gene Ontology (GO) enrichment analysis performed on statistically significantly regulated unique protein coding genes revealed overrepresentation of aging gene cluster. Moreover, as before, overexpression of several genes involved in oxidative stress responses was detected. Conclusion: More stringent statistical analysis predictably resulted in a smaller number of regulated genes and thus overrepresented GOs comparing to the earlier paper. However, major conclusions of the previous study can be still regarded as valid, as the most important aging GO is still overrepresented. Background: The ability of an organism to repair DNA damage is implicated in carcinogenesis and aging. Interestingly expression profiling of Nucleotide Excision Repair (NER) deficient segmental progeroid mice revealed gene expression changes resembling these observed in aged wild type animals. Our previous transcriptional profiling of NER-deficient C. elegans xpa-1 mutant showed overrepresentation of genes involved in lifespan determination and upregulation of several oxidative stress response genes (Fensgard et al. Aging 2010). However, since an independent study performed by Boyd and coworkers (Boyd et al. Mut Res 2010) showed limited number of changes in xpa-1 mutant. Therefore to independently validate that transcriptome modulation does take place in xpa-1 mutants, we performed another global gene expression profiling based on 5 independent biological replicates allowing more stringent statistical analysis. Results: In agreement with what was observed by Boyd and coworkers (Boyd et al. Mut Res 2010) current transcriptomic analysis detected fewer changes in xpa-1 C. elegans mutant with only a few genes regulated more than 4-fold. Nevertheless, Gene Ontology (GO) enrichment analysis performed on statistically significantly regulated unique protein coding genes revealed overrepresentation of aging gene cluster. Moreover, as before, overexpression of several genes involved in oxidative stress responses was detected. Conclusion: More stringent statistical analysis predictably resulted in a smaller number of regulated genes and thus overrepresented GOs comparing to the earlier paper. However, major conclusions of the previous study can be still regarded as valid, as the most important aging GO is still overrepresented. Activation of oxidative stress-responses and downregulation of insulin-like signaling (ILS) is seen in Nucleotide Excision Repair (NER) deficient segmental progeroid mice. Evidence suggests that this is a survival response to persistent transcription-blocking DNA damage, although the relevant lesions have not been identified. Here we provide evidence for transcriptional reprogramming in NER-deficient C. elegans xpa-1 by transcriptomic and proteomic approaches. This reprograming is accompanied by increased intracellular ROS and ATP levels and lifespan shortening in xpa-1 mutant. Moreover we show that Base Excision Repair DNA glycosylase NTH-1 is upstream form the signaling events leading to transcriptomic changes, as its downregulation reverses overexpression of sod-3, gst-4 and aqp-1 genes, reduces intracellular ROS and ATP levels and reverses lifespan shortening observed in xpa-1 mutant. Surprisingly, however, these responses appear to not depend on cyclopurine levels, since these lesions are lower in xpa-1 C. elegans mutant than in the wild type. Finally, we also explore here which other upstream factors are necessary for transcriptional reprograming in xpa-1 mutant. Untreated Caenorhabditis elegans mutant deficient in xpa-1 and the wild type N2 strain were subjected to transcriptome analysis using Affymetrix platform. For each sample group five replicates were analyzed.
Project description:Background: The ability of an organism to repair DNA damage is implicated in carcinogenesis and aging. Interestingly expression profiling of Nucleotide Excision Repair (NER) deficient segmental progeroid mice revealed gene expression changes resembling these observed in aged wild type animals. Our previous transcriptional profiling of NER-deficient C. elegans xpa-1 mutant showed overrepresentation of genes involved in lifespan determination and upregulation of several oxidative stress response genes (Fensgard et al. Aging 2010). However, since an independent study performed by Boyd and coworkers (Boyd et al. Mut Res 2010) showed limited number of changes in xpa-1 mutant. Therefore to independently validate that transcriptome modulation does take place in xpa-1 mutants, we performed another global gene expression profiling based on 5 independent biological replicates allowing more stringent statistical analysis. Results: In agreement with what was observed by Boyd and coworkers (Boyd et al. Mut Res 2010) current transcriptomic analysis detected fewer changes in xpa-1 C. elegans mutant with only a few genes regulated more than 4-fold. Nevertheless, Gene Ontology (GO) enrichment analysis performed on statistically significantly regulated unique protein coding genes revealed overrepresentation of aging gene cluster. Moreover, as before, overexpression of several genes involved in oxidative stress responses was detected. Conclusion: More stringent statistical analysis predictably resulted in a smaller number of regulated genes and thus overrepresented GOs comparing to the earlier paper. However, major conclusions of the previous study can be still regarded as valid, as the most important aging GO is still overrepresented. Activation of oxidative stress-responses and downregulation of insulin-like signaling (ILS) is seen in Nucleotide Excision Repair (NER) deficient segmental progeroid mice. Evidence suggests that this is a survival response to persistent transcription-blocking DNA damage, although the relevant lesions have not been identified. Here we provide evidence for transcriptional reprogramming in NER-deficient C. elegans xpa-1 by transcriptomic and proteomic approaches. This reprograming is accompanied by increased intracellular ROS and ATP levels and lifespan shortening in xpa-1 mutant. Moreover we show that Base Excision Repair DNA glycosylase NTH-1 is upstream form the signaling events leading to transcriptomic changes, as its downregulation reverses overexpression of sod-3, gst-4 and aqp-1 genes, reduces intracellular ROS and ATP levels and reverses lifespan shortening observed in xpa-1 mutant. Surprisingly, however, these responses appear to not depend on cyclopurine levels, since these lesions are lower in xpa-1 C. elegans mutant than in the wild type. Finally, we also explore here which other upstream factors are necessary for transcriptional reprograming in xpa-1 mutant.
Project description:This SuperSeries is composed of the following subset Series: GSE21008: Linking toxicant physiological mode of action with induced gene expression changes in Caenorhabditis elegans: atrazine GSE21010: Linking toxicant physiological mode of action with induced gene expression changes in Caenorhabditis elegans: cadmium GSE21011: Linking toxicant physiological mode of action with induced gene expression changes in Caenorhabditis elegans: fluoranthene Refer to individual Series
Project description:Background: The force generating mechanism of muscle is evolutionarily ancient; the fundamental structural and functional components of the sarcomere are common to motile animals throughout phylogeny. Recent evidence suggests that the transcription factors that regulate muscle development are also conserved. Thus, a comprehensive description of muscle gene expression in a simple model organism should define a basic muscle transcriptome that is also expressed in animals with more complex body plans. To this end, we have applied Micro-Array Profiling of Caenorhabditis elegans Cells (MAPCeL) to muscle cell populations extracted from developing Caenorhabditis elegans embryos. Results: Fluorescence Activated Cell Sorting (FACS) was used to isolate myo-3::GFP-positive muscle cells, and their cultured derivatives, from dissociated early Caenorhabditis elegans embryos. Microarray analysis identified 6,693 expressed genes, 1,305 of which are enriched in the myo-3::GFP positive cell population relative to the average embryonic cell. The muscle-enriched gene set was validated by comparisons to known muscle markers, independently derived expression data, and GFP reporters in transgenic strains. These results confirm the utility of MAPCeL for cell type-specific expression profiling and reveal that 60% of these transcripts have human homologs. Conclusions: This study provides a comprehensive description of gene expression in developing Caenorhabditis elegans embryonic muscle cells. The finding that over half of these muscle-enriched transcripts encode proteins with human homologs suggests that mutant analysis of these genes in Caenorhabditis elegans could reveal evolutionarily conserved models of muscle gene function with ready application to human muscle pathologies. Keywords: embryonic muscle, myo-3::GFP
Project description:Yilmaz2016 - Genome scale metabolic model -
Caenorhabditis elegans (iCEL1273)
This model is described in the article:
A Caenorhabditis elegans
Genome-Scale Metabolic Network Model.
Yilmaz LS, Walhout AJ.
Cell Syst 2016 May; 2(5): 297-311
Abstract:
Caenorhabditis elegans is a powerful model to study
metabolism and how it relates to nutrition, gene expression,
and life history traits. However, while numerous experimental
techniques that enable perturbation of its diet and gene
function are available, a high-quality metabolic network model
has been lacking. Here, we reconstruct an initial version of
the C. elegans metabolic network. This network model
contains 1,273 genes, 623 enzymes, and 1,985 metabolic
reactions and is referred to as iCEL1273. Using flux balance
analysis, we show that iCEL1273 is capable of representing the
conversion of bacterial biomass into C. elegans biomass
during growth and enables the predictions of gene essentiality
and other phenotypes. In addition, we demonstrate that gene
expression data can be integrated with the model by comparing
metabolic rewiring in dauer animals versus growing larvae.
iCEL1273 is available at a dedicated website
(wormflux.umassmed.edu) and will enable the unraveling of the
mechanisms by which different macro- and micronutrients
contribute to the animal's physiology.
This model is hosted on
BioModels Database
and identified by:
MODEL1604210000.
To cite BioModels Database, please use:
BioModels Database:
An enhanced, curated and annotated resource for published
quantitative kinetic models.
To the extent possible under law, all copyright and related or
neighbouring rights to this encoded model have been dedicated to
the public domain worldwide. Please refer to
CC0
Public Domain Dedication for more information.