Project description:Identifying causes of sporadic intellectual disability remains a considerable medical challenge. Here, we demonstrate that null mutations in the NONO gene, a member of the Drosophila Behavior Human Splicing (DBHS) protein family, are a novel cause of X-linked syndromic intellectual disability. Comparing humans to Nono-deficient mice revealed related behavioral and craniofacial anomalies, as well as global transcriptional dysregulation. Nono-deficient mice also showed deregulation of a large number of synaptic transcripts, causing a disorganization of inhibitory synapses, with impaired postsynaptic scaffolding of gephyrin. Alteration of gephyrin clustering could be rescued by over-expression of Gabra2 in NONO-compromised neurons. These findings link NONO to intellectual disability and first highlight the key role of DBHS proteins in functional organization of GABAergic synapses.
Project description:Identifying causes of sporadic intellectual disability remains a considerable medical challenge. Here, we demonstrate that null mutations in the NONO gene, a member of the Drosophila Behavior Human Splicing (DBHS) protein family, are a novel cause of X-linked syndromic intellectual disability. Comparing humans to Nono-deficient mice revealed related behavioral and craniofacial anomalies, as well as global transcriptional dysregulation. Nono-deficient mice also showed deregulation of a large number of synaptic transcripts, causing a disorganization of inhibitory synapses, with impaired postsynaptic scaffolding of gephyrin. Alteration of gephyrin clustering could be rescued by over-expression of Gabra2 in NONO-compromised neurons. These findings link NONO to intellectual disability and first highlight the key role of DBHS proteins in functional organization of GABAergic synapses.
Project description:Identifying causes of sporadic intellectual disability remains a considerable medical challenge. Here, we demonstrate that null mutations in the NONO gene, a member of the Drosophila Behavior Human Splicing (DBHS) protein family, are a novel cause of X-linked syndromic intellectual disability. Comparing humans to Nono-deficient mice revealed related behavioral and craniofacial anomalies, as well as global transcriptional dysregulation. Nono-deficient mice also showed deregulation of a large number of synaptic transcripts, causing a disorganization of inhibitory synapses, with impaired postsynaptic scaffolding of gephyrin. Alteration of gephyrin clustering could be rescued by over-expression of Gabra2 in NONO-compromised neurons. These findings link NONO to intellectual disability and first highlight the key role of DBHS proteins in functional organization of GABAergic synapses.
Project description:The X-linked alpha thalassaemia intellectual disability syndrome (ATRX) protein is a member of the SWI/SNF family of chromatin remodelling factors which acts as an ATP dependent molecular motor. Germline mutations in ATRX give rise to a severe form of syndromal intellectual disability (ATR-X syndrome). To date, only a small number of genes have been identified that are affected by pathogenic ATRX mutations in human. We performed microarray experiments on LCLs from normal individuals and patients with diverse pathogenic ATRX mutations, to identify more genes regulated by ATRX.
Project description:Down Syndrome (DS) results from the trisomy of human chromosome 21 (HSA21). It is still the most frequent intellectual disability, affecting 1 newborn per 700 births. Among candidate genes explaining intellectual disabilities seen in DS patients, the dual specificity tyrosine-phosphorylation regulated kinase 1A, DYRK1A, is located in the DS critical region of chromosome 21. DYRK1A has become a major screening target for the development of selective and potent pharmacological inhibitors. We here investigated the effects of a relatively selective DYRK1A inhibitor, Leucettine 41 (hereafter L41) in three different trisomic mouse models with increasing genetic complexity, Tg(Dyrk1a), Ts65Dn and Dp1Yey. Leucettines are derived from the marine sponge alkaloid Leucettamine B.
Project description:The discovery of activity-dependent neuroprotective protein (ADNP) regulated tooth eruption in mice and man, provides, for the first time, an early detection of tooth eruption, with full or almost full mouth of teeth at one year of age, as a potential biomarker for an intellectual disability (ID)/autism spectrum disorder (ASD) syndrome, toward improved translational medicine.