Project description:Stem cell-derived tissues have wide potential for modelling developmental and pathological processes as well as cell-based therapy. However, it has proven difficult to generate several key cell types in vitro, including skeletal muscle. In vertebrates, skeletal muscles derive during embryogenesis from the presomitic mesoderm (PSM). Using PSM development as a guide to establish conditions for the differentiation of monolayer cultures of embryonic stem (ES) cells into PSM-like cells without the introduction of transgenes or cell sorting. We generated a high resolution transcriptome expression landscape along the PSM of the mouse embryo, by microdissecting consecutive fragment of the PSM along the antero-posterior axis of the embryo. We took advantage of the observation that during development of embryo, the antero-posterior spatial position of the tissue is directly correlated to its differentiation (time) stage, thus generating an expression time-course of presomitic mesoderm development.
Project description:Presomitic mesoderm (PSM) were microdissected from E9.5 mouse embryos (WT and TCre/+;Taf10flox/flox). 3 PSM (17-19 somites stage) were pooled per microarray, in triplicates, per genotypes
Project description:Global gene expression profiling of human iPSC and the iPSC-derived presomitic mesoderm(PSM), somite(SM), and the derivatives, dermomyotome(DM), dermatome(D), myotome(MYO), sclerotome(SCL) and syndetome(SYN).
Project description:Somitogenesis is the segmentation of the developing embryonic body axis into somites and is guided by oscillating genes, which create waves of expression that travel across the presomitic mesoderm (PSM) from posterior to anterior. Upon arrival of a wave at the PSM's anterior end, a new somite is formed. To identify genes that are expressed in a wave-like pattern we dissected the PSM of four different mouse embryos (pre-turned), separated the left and right sides, and divided each into five segments, from posterior to anterior (sampling sites 1 to 5). Each segment was used to construct libraries for high-throughput RNA-sequencing. For one embryo, we also sequenced two somites.
Project description:Stem cell-derived tissues have wide potential for modelling developmental and pathological processes as well as cell-based therapy. However, it has proven difficult to generate several key cell types in vitro, including skeletal muscle. In vertebrates, skeletal muscles derive during embryogenesis from the presomitic mesoderm (PSM). Using PSM development as a guide to establish conditions for the differentiation of monolayer cultures of embryonic stem (ES) cells into PSM-like cells without the introduction of transgenes or cell sorting.
Project description:Stem cell-derived tissues have wide potential for modelling developmental and pathological processes as well as cell-based therapy. However, it has proven difficult to generate several key cell types in vitro, including skeletal muscle. In vertebrates, skeletal muscles derive during embryogenesis from the presomitic mesoderm (PSM). Using PSM development as a guide, we establish conditions for the differentiation of monolayer cultures of mouse embryonic stem (ES) cells into PSM-like cells without the introduction of transgenes or cell sorting. We differentiated mouse ESCs in serum-free medium supplemented with Rspo3 ( or as an alternative with Chir 9902) and the Bmp inhibitor LDN193189. In vivo, the PSM cells are first expressing Msgn1 (posterior PSM marker) and then mature to express Pax3 (anterior PSM marker). After 4 days of differentiation of mESCs, Msgn1-positive cells were FACS-sorted and their transcriptome analyzed. After 6 days of differentiation, Pax3-positive cells were sorted and their transcriptome analyzed. Mouse ESCs differentiated for 0, 4 and 6 days in serum-free medium containing a Wnt activator, a BMP inhibitor and DMSO, to study paraxial mesoderm in vitro
Project description:Transcriptional profiling of E9.5 mouse embryo tissue from the presomitic mesoderm (PSM) and somites I-IV. Tissue from embryos lacking a functional Paraxis gene (Paraxis-/-) was compared to identical tissue from E9.5 Wild Type embryos. The goal was to identify genes that had become deregulated in the absence of the transcription factor, Paraxis.
Project description:Stem cell-derived tissues have wide potential for modelling developmental and pathological processes as well as cell-based therapy. However, it has proven difficult to generate several key cell types in vitro, including skeletal muscle. In vertebrates, skeletal muscles derive during embryogenesis from the presomitic mesoderm (PSM). Using PSM development as a guide, we establish conditions for the differentiation of monolayer cultures of mouse embryonic stem (ES) cells into PSM-like cells without the introduction of transgenes or cell sorting. We differentiated mouse ESCs in a medium supplemented with Rspo3, DMSO and the Bmp inhibitor Noggin. In vivo, the PSM cells are first expressing Msgn1 (posterior PSM marker) . After 3 and 4 days of differentiation of mESCs, Msgn1-positive cells were FACS-sorted and their transcriptome analyzed.