Project description:Oryza sativa cv. Nipponbare was engineered to over-express a barley alanine aminotransferase (alaAT) gene using the promoter (OsANT1) from a rice aldehyde dehydrogenase gene that expresses in roots. We use biotechnology to improve the nitrogen use efficiency of rice by over-expressing alaAT in a tissue specific (root) manner. The AlaAT enzyme is a reversible aminotransferase that is linked to both C and N metabolism since it uses pyruvate plus glutamate to produce alanine and 2-oxoglutarate, and visa versa.
Project description:Oryza sativa cv. Nipponbare was engineered to over-express a barley alanine aminotransferase (alaAT) gene using the promoter (OsANT1) from a rice aldehyde dehydrogenase gene that expresses in roots. We are using biotechnology to improve the nitrogen use efficiency of rice by over-expressing alaAT in a tissue specific (root) manner. The AlaAT enzyme is a reversible aminotransferase that is linked to both C and N metabolism since it uses pyruvate plus glutamate to produce alanine and 2-oxoglutarate, and visa versa.
Project description:Oryza sativa cv. Nipponbare was engineered to over-express a barley alanine aminotransferase (alaAT) gene using the promoter (OsANT1) from a rice aldehyde dehydrogenase gene that expresses in roots. We are using biotechnology to improve the nitrogen use efficiency of rice by over-expressing alaAT in a tissue specific (root) manner. The AlaAT enzyme is a reversible aminotransferase that is linked to both C and N metabolism since it uses pyruvate plus glutamate to produce alanine and 2-oxoglutarate, and visa versa. Wildtype rice (Nipponbare) and three independent OsANT1:HvAlaAT rice transgenic lines (AGR1/7, AGR1/8 and AGR3/8) were grown hydroponically with 5mM NH4+ as the nitrogen source, to the reproductive stage. RNA samples were taken at active tillering, maximum tillering and end-of-tillering stages from root and shoot, at mid-day of the plants' day/night cycle. The RNA from root and shoot at maxiumum tillering was used for microarray analysis. Please read Beatty et al., 2009, Plant Biotechnology Journal 7, pp562-576 for further details..
Project description:Oryza sativa cv. Nipponbare was engineered to over-express a barley alanine aminotransferase (alaAT) gene using the promoter (OsANT1) from a rice aldehyde dehydrogenase gene that expresses in roots. We use biotechnology to improve the nitrogen use efficiency of rice by over-expressing alaAT in a tissue specific (root) manner. The AlaAT enzyme is a reversible aminotransferase that is linked to both C and N metabolism since it uses pyruvate plus glutamate to produce alanine and 2-oxoglutarate, and visa versa. Transcriptome data from the roots and shoots of rice plants at maximum tillering, grown hydroponically on either 0.5, 2 or 5 mM NH4+ as the nitrogen source. Wildtype rice (Nipponbare) and two independent OsANT1:HvAlaAT rice transgenic lines (AGR1/7, and AGR3/8) were grown hydroponically with either 0.5, 2 or 5mM NH4+ as the nitrogen source, to the reproductive stage. Tissue samples were taken at active and maximum tillering from root and shoot, at mid-day of the plants' day/night cycle. The RNA from root and shoot at maxiumum tillering was used for mcroarray analysis. Please read Beatty et al., 2009, PLant Biotechnology Journal 7, pp562-576 for detailed about these transgenic lines. The results from this variable N study were reported in a manuscript submitted to Botany, July 2013
Project description:In this study, we used a cross-species network approach to uncover nitrogen (N)-regulated network modules conserved across a model and a crop species. By translating gene network knowledge from the data-rich model Arabidopsis (Arabidopsis thaliana, ecotype Columbia-0) to a crop, rice (Oryza sativa spp. japonica (Nipponbare)), we identified evolutionarily conserved N-regulatory modules as targets for translational studies to improve N use efficiency in transgenic plants.
Project description:The rice gene SUB1A-1 confers flooding tolerance restricting shoot growth during submergence. Rice with SUB1A also show more rapid recovery after submergence ends, but mechanisms by which SUB1A improves recovery from submergence had not been examined. In this study, the transcriptome was sequenced at five time points over a 24 hour submergence recovery period in near-isogenic rice genotypes with and without SUB1A.
Project description:In this study, we examined the transcriptome dynamics within the matured fully expanded rice leaf and used strand-specific RNA sequencing to generate a comprehensive transcriptome dataset for the mature rice leaf. The rice Nipponbare (Oryza sativa l. japonica) seedlings were grown in the greenhouse. About 20 days after planting, the fully opened 4th leaves was cut it into seven 3-cm segments, from bottom to tip and labeled as sections 1 to 7, respectively. The tissues were immediately frozen in liquid nitrogen for total RNA extraction. Two biological replicates were collected for each section. Note: All samples in SRA were assigned the same sample accession (SRS685294). This is incorrect as there are different samples, hence âSource Nameâ was replaced with new values. Comment[ENA_SAMPLE] contains the original SRA sample accessions.