Project description:Oryza sativa cv. Nipponbare was engineered to over-express a barley alanine aminotransferase (alaAT) gene using the promoter (OsANT1) from a rice aldehyde dehydrogenase gene that expresses in roots. We use biotechnology to improve the nitrogen use efficiency of rice by over-expressing alaAT in a tissue specific (root) manner. The AlaAT enzyme is a reversible aminotransferase that is linked to both C and N metabolism since it uses pyruvate plus glutamate to produce alanine and 2-oxoglutarate, and visa versa.
Project description:Oryza sativa cv. Nipponbare was engineered to over-express a barley alanine aminotransferase (alaAT) gene using the promoter (OsANT1) from a rice aldehyde dehydrogenase gene that expresses in roots. We are using biotechnology to improve the nitrogen use efficiency of rice by over-expressing alaAT in a tissue specific (root) manner. The AlaAT enzyme is a reversible aminotransferase that is linked to both C and N metabolism since it uses pyruvate plus glutamate to produce alanine and 2-oxoglutarate, and visa versa.
Project description:Oryza sativa cv. Nipponbare was engineered to over-express a barley alanine aminotransferase (alaAT) gene using the promoter (OsANT1) from a rice aldehyde dehydrogenase gene that expresses in roots. We are using biotechnology to improve the nitrogen use efficiency of rice by over-expressing alaAT in a tissue specific (root) manner. The AlaAT enzyme is a reversible aminotransferase that is linked to both C and N metabolism since it uses pyruvate plus glutamate to produce alanine and 2-oxoglutarate, and visa versa. Wildtype rice (Nipponbare) and three independent OsANT1:HvAlaAT rice transgenic lines (AGR1/7, AGR1/8 and AGR3/8) were grown hydroponically with 5mM NH4+ as the nitrogen source, to the reproductive stage. RNA samples were taken at active tillering, maximum tillering and end-of-tillering stages from root and shoot, at mid-day of the plants' day/night cycle. The RNA from root and shoot at maxiumum tillering was used for microarray analysis. Please read Beatty et al., 2009, Plant Biotechnology Journal 7, pp562-576 for further details..
Project description:Oryza sativa cv. Nipponbare was engineered to over-express a barley alanine aminotransferase (alaAT) gene using the promoter (OsANT1) from a rice aldehyde dehydrogenase gene that expresses in roots. We use biotechnology to improve the nitrogen use efficiency of rice by over-expressing alaAT in a tissue specific (root) manner. The AlaAT enzyme is a reversible aminotransferase that is linked to both C and N metabolism since it uses pyruvate plus glutamate to produce alanine and 2-oxoglutarate, and visa versa. Transcriptome data from the roots and shoots of rice plants at maximum tillering, grown hydroponically on either 0.5, 2 or 5 mM NH4+ as the nitrogen source. Wildtype rice (Nipponbare) and two independent OsANT1:HvAlaAT rice transgenic lines (AGR1/7, and AGR3/8) were grown hydroponically with either 0.5, 2 or 5mM NH4+ as the nitrogen source, to the reproductive stage. Tissue samples were taken at active and maximum tillering from root and shoot, at mid-day of the plants' day/night cycle. The RNA from root and shoot at maxiumum tillering was used for mcroarray analysis. Please read Beatty et al., 2009, PLant Biotechnology Journal 7, pp562-576 for detailed about these transgenic lines. The results from this variable N study were reported in a manuscript submitted to Botany, July 2013
Project description:The studies of rice nitrogen concentration on the expression of miRNA so far are mostly limited to the exogenous nitrogen, leaving the effect of endogenous nitrogen largely unexplored. OsNAR2.1 is a high-affinity nitrate transporter partner protein which plays a central role in nitrate absorption and translocation in rice. The expression of OsNAR2.1 could influence the concentration of the endogenous nitrogen in rice. We showed that the expression and production of miRNA in rice can be influenced by manipulating the endogenous nitrogen concentration via OsNAR2.1 transgenic lines. The small RNA expressed differently in two transgenic rice lines (nitrogen efficient line with overexpression of OsNAR2.1 (Ov199), nitrogen-inefficient line with knockdown OsNAR2.1 by RNAi (RNAi)) compared to the wild-type (NP). Comparative hierarchical clustering expression pattern analysis revealed that the expression profiles of mature miRNA in both transgenic lines were different from NP.
Project description:The Leucine-responsive Regulatory Protein (Lrp) family is a widespread family of regulatory transcription factors in prokaryotes. BarR is an Lrp-like transcription factor in the model archaeon Sulfolobus acidocaldarius that activates the expression of a -alanine aminotransferase gene, which is involved in -alanine degradation. In contrast to classical Lrp-like transcription factors, BarR is not responsive to any of the -amino acids but interacts specifically with -alanine. Besides the juxtaposed -alanine aminotransferase gene, other regulatory targets of BarR have not yet been identified although -alanine is the precursor of coenzyme A and thus an important central metabolite. The aim of this study is to extend the knowledge of the DNA-binding characteristics of BarR and of its corresponding regulon from a local to a genome-wide perspective.
Project description:In the animal study, both a decrease of serum alanine aminotransferase level and whole blood gene expression changes were observed in rats fed a MLP-containing high-fat diet compared with rats fed a high-fat diet.