Project description:Infection of cattle with Mycobacterium bovis causes severe financial hardship in many countries, in addition to presenting a health risk for humans. As an intracellular pathogen, M. bovis, adapted to survive and thrive within the intramacrophage environment. However, little is known about expression patterns in the macrophage, particularly in the bovine host. In this study, DNA microarray analysis was used to detect genes expressed in Holstein bovine macrophages derived from peripheral blood mononuclear cells infected during four hours with two Argentinean strains of M. bovis, a virulent strain, 04-303 and an attenuated strain, 534. Genes encoding antrax toxin receptor, cell division and apoptosis regulator, ankyrin proteins that are found within the membrane associated cytoskeleton, protein of cell differentiation and regulators of endocytic traffic of membrane were more strongly expressed in infected macrophages.
Project description:Mycobacterium bovis (M. bovis) and Mycobacterium avium subspecies paratuberculosis (MAP) are important pathogens of cattle, causing bovine tuberculosis and Johne’s disease respectively. M. bovis and MAP infect residential macrophages in the lung and intestines respectively and subvert the macrophage biology to create a survival niche. To investigate this interaction we simultaneously studied the transcriptional response of bovine monocyte-derived macrophages to infection with two strains of M. bovis (AF2122/97 and G18) and two strains of MAP (C & L1).
Project description:Infection of cattle with Mycobacterium bovis causes severe financial hardship in many countries, in addition to presenting a health risk for humans. As an intracellular pathogen, M. bovis, adapted to survive and thrive within the intramacrophage environment. However, little is known about expression patterns in the macrophage, particularly in the bovine host. In this study, DNA microarray analysis was used to detect genes expressed in Holstein bovine macrophages derived from peripheral blood mononuclear cells infected during four hours with two Argentinean strains of M. bovis, a virulent strain, 04-303 and an attenuated strain, 534. Genes encoding antrax toxin receptor, cell division and apoptosis regulator, ankyrin proteins that are found within the membrane associated cytoskeleton, protein of cell differentiation and regulators of endocytic traffic of membrane were more strongly expressed in infected macrophages. Blood from healthy Holstein bovines was taken in sterile conditions and peripheral blood mononuclear cells (PBMC) were separated from heparinized blood. PBMCs were used to prepare ten independent cultures which were incubated at 37C for one week in RPMI 1640 complete medium supplemented with 10% of autologous plasma. Four cultures were infected with viable cells of M. bovis virulent strain 04-303, four with avirulent strain 534 and two were left as uninfected controls. Four hours post infection, the cells were scraped, lysed. RNA was extracted, labeled and hybridized to ten Affymetrix Bovine Genome arrays.
Project description:Bovine tuberculosis, caused by Mycobacterium bovis, is a disease of considerable economic importance yet comparatively little is known about the bovine immune response to the disease. Alveolar macrophages are one of the first cells to encounter mycobacteria following infection. In this experiment we investigated the early transcriptional response of bovine alveolar macrophages following infection with M. bovis. The transcriptional response to heat-killed M. bovis was also investigated to look for genes that are only differentially transcribed in response to the live organism. Five-condition experiment, uninfected, live and heat-killed M. bovis-infected bovine alveolar macrophages from five cattle infected for two and four hours. Comparisons were within animal. Dye swaps were incorporated into the design.
Project description:Bovine tuberculosis, caused by Mycobacterium bovis, is a disease of considerable economic importance yet comparatively little is known about the bovine immune response to the disease. Alveolar macrophages are one of the first cells to encounter mycobacteria following infection. In this experiment we investigated the early transcriptional response of bovine alveolar macrophages following infection with M. bovis. The transcriptional response to heat-killed M. bovis was also investigated to look for genes that are only differentially transcribed in response to the live organism.
Project description:Mycobacterium bovis is an intracellular pathogen that causes tuberculosis in cattle. Following infection, the pathogen resides and persists inside host macrophages by subverting host immune responses via a diverse range of mechanisms. Here, a high-density bovine microarray platform was used to examine the bovine monocyte-derived macrophage transcriptome response to M. bovis infection relative to infection with the attenuated vaccine strain, M. bovis Bacille CalmetteM-bM-^@M-^SGuM-CM-)rin. Differentially expressed genes were identified (adjusted P-value M-bM-^IM-$ 0.01) and interaction networks generated across an infection time course of 2, 6 and 24 h. The largest number of biological interactions was observed in the 24 h network, which exhibited small-worldscale-free network properties. The 24 h network featured a small number of key hub and bottleneck gene nodes, including IKBKE, MYC, NFKB1 and EGR1 that differentiated the macrophage response to virulent and attenuated M. bovis strains, possibly via the modulation of host cell death mechanisms. These hub and bottleneck genes represent possible targets for immunomodulation of host macrophages by virulent mycobacterial species that enable their survival within a hostile environment. Affymetrix GeneChipM-BM-. Bovine Genome Arrays were used to examine gene expression from a paired comparison of bovine monocyte-derived macrophages (MDM) after in vitro challenge with Mycobacterium bovis versus M. bovis BCG across a time series of 2 hr, 6 hr and 24 hr post-challenge.
Project description:In this study we compared the transcriptome of bovine macrophages infected with two Mycobacterium bovis strains of variable virulence, co-cultured with autologous lymphocytes. We used the highly virulent M. bovis strain called Mb04-303 and the attenuated Mb534 strain. We first observed that only the infection of bovine macrophages with the virulent strain, Mb04-303, induced in peripheral bovine mononuclear cells a powerful innate immune response capable of controlling the intracellular mycobacterial replication.By RNAseq analysis we found that infections with Mb04-303 downregulated the KEAP1-NFE2L2 pathway that encodes a transcriptional factor involved in antioxidant genes and inflammasome activation and upregulated the type 1 interferon signalling pathway, compared to the infections with the attenuated Mb534 strain. T
Project description:Whole-transcriptome, high-throughput RNA sequence analysis of the bovine macrophage response to Mycobacterium bovis infection in vitro