Project description:Campylobacter jejuni is the major cause of acute gastroenteritis in the developed world. It is usually acquired through contaminated poultry as C. jejuni causes a silent asymptomatic infection of the chicken. Pathogens face different sources of stress during its transit through the gut. In this study, we describe the ability of C. jejuni to survive nitrosative stress at very low oxygen levels that reflect those in hypoxic gut environments. Specifically, we here explore an innovative model of signal recognition during colonization. We use a diffusion capsule to feed small, diffusible molecules from chicken caecal matter into a microaerobic C. jejuni culture to study the transcriptomic changes mounted as response to chemical signals present in the chicken gut. We find that in early stages of exposure to the caecal contents (10 min) the dual component colonization regulator, dccR, plays an important yet not fully understood role. Although the caecal material contains cyanide derived from plant sources, we find no role for a truncated globin (encoded by ctb), which has previously been implicated in resistance to this haem ligand.
Project description:Gene content comparison of control C. jejuni subsp. jejuni strain 11168 which colonizes and causes disease in C57BL/6 IL-10-/- mice versus C. jejuni strains D6844, D6845, D6846, D6847, D6848, D6849, D0121, D0835, D2586, D2600,33560 and NW in the C57BL/6 IL-10-/- mice. Keywords: DNA/DNA comparison
Project description:Gene content comparison of control C. jejuni subsp. jejuni strain 11168 which colonizes and causes disease in C57BL/6 IL-10-/- mice versus C. jejuni strains D6844, D6845, D6846, D6847, D6848, D6849, D0121, D0835, D2586, D2600,33560 and NW in the C57BL/6 IL-10-/- mice. Keywords: DNA/DNA comparison Two genome comparison of disease strain versus non disease strain of C.j., 4 Biological replicates - 2 of which were dye swaps
Project description:Campylobacter jejuni is one of the major causes of food-borne infections world-wide. The species is strictly host associated and tolerates mild levels of acidity and alkalinity. The ability to survive pH challenges is one of the key aspects of the ability of C. jejuni to survive in food, stomach transit and enables host gastrointestinal tract colonisation. In this study C. jejuni reference strain NCTC 11168 grown within its pH physiological normal growth range (pH 5.8, 7.0 and 8.0, = ~0.5 h-1) and exposed to pH 4.0 shock for 2 hours. Proteins extracted from biomass were quantified using a combined data dependent and independent acquisition label-free based approach with the aim to identify pH-dependent proteins that respond in a growth phase independent manner. It was discovered that gluconate 2-dehydrogenase GdhAB, NssR-regulated globins Cgb and Ctb, cupin domain protein Cj0761, cytochrome c protein CccC (Cj0037c), and phosphate-binding transporter protein PstB all show acidic pH dependent abundance increases but are not activated by sub-lethal acid shock. Glutamate synthase (GLtBD) and the MfrABC and NapAGL respiratory complexes were induced in cells grown at pH 8.0. The response to pH stress by C. jejuni is to bolster microaerobic respiration and at pH 8.0 this is assisted by accumulation of glutamate the conversion of which could bolster fumarate respiration. Global protein abundance reduction of proteins linked to growth and survival overalls aids cellular energy conservation thus preserving a similar growth rate.
Project description:During colonization in the host gastrointestinal tract, the enteric bacteria Campylobacter jejuni is exposed to a variety of signaling molecules including the catecholamine hormones epinephrine (Epi) and norepinephrine (NE). NE has been determined to stimulate the growth of C. jejuni as well as increase its pathogenicity. To investigate the mechanisms of NE or Epi on the biology of C. jejuni, the global gene expression profiles of C. jejuni NCTC 11168 cultured in iron-restricted medium were analyzed in response to NE or Epi. Totally, 183 and 156 genes were differentially expressed by NE and Epi respectively, with 102 differentially expressed genes common between the two treatments. These genes are involved in diverse cellular functions including iron uptake systems, motility, virulence, oxidative stress response, nitrosative stress tolerance, enzyme metabolism, DNA repair and metabolism and ribosomal protein biosynthesis. Adherence to and invasion of Caco-2 cells by C. jejuni were enhanced upon exposure to NE or Epi. These results indicated that NE and Epi have similar effects on the gene expression of C. jejuni and that the effects on gene expression may contribute to elucidate the mechanisms on interaction between host and C. jejuni.
Project description:Reference and type strains of well-known bacteria have been a cornerstone of microbiology research for decades. The sharing of well-characterized isolates among laboratories has run in parallel with research efforts and enhanced the reproducibility of experiments, leading to a wealth of knowledge about trait variation in different species and the underlying genetics. Campylobacter jejuni strain NCTC 11168, deposited at the National Collection of Type Cultures in 1977, has been adopted widely as a reference strain by researchers worldwide and was the first Campylobacter for which the complete genome was published (in 2000). In this study, we collected 23 C. jejuni NCTC 11168 reference isolates from laboratories across the UK and compared variation in simple laboratory phenotypes with genetic variation in sequenced genomes. Putatively identical isolates, identified previously to have aberrant phenotypes, varied by up to 281 SNPs (in 15 genes) compared to the most recent reference strain. Isolates also display considerable phenotype variation in motility, morphology, growth at 37 °C, invasion of chicken and human cell lines, and susceptibility to ampicillin. This study provides evidence of ongoing evolutionary change among C. jejuni isolates as they are cultured in different laboratories and highlights the need for careful consideration of genetic variation within laboratory reference strains. This article contains data hosted by Microreact.