Project description:The Drosophila spermatogenesis cell differentiation pathway involves the activation of a large set of genes in primary spermatocytes. Most of these genes are activated by testis-specific TATA-binding protein associated factors (tTAFs). In the current model for the activation mechanism, Polycomb plays a key role silencing these genes in the germline precursors, and tTAF-dependent activation in primary spermatocytes involves the displacement of Polycomb from gene promoters. We investigated the genome-wide binding of Polycomb in wild type and tTAF mutant testes. According to the model we expected to see a clear enhancement in Polycomb binding at tTAF-dependent spermatogenesis genes in tTAF mutant testes. However, we find little evidence for such an enhancement in tTAF mutant testes compared to wild type. To avoid problems arising from cellular heterogeneity in whole testis analysis, we further tested the model by analysing Polycomb binding in purified germline precursors, representing cells before tTAF-dependent gene activation. Although we find Polycomb associated with its canonical targets, we find little or no evidence of Polycomb at spermatogenesis genes. The lack of Polycomb at tTAF-dependent spermatogenesis genes in precursor cells argues against a model where Polycomb displacement is the mechanism of spermatogenesis gene activation. This genome-wide ChIP-array study investigates the binding of Polycomb in three biological samples: wild type (WT) whole testes, tTAF (can) mutant whole testes, and FACS-sorted germline precursor cells. We performed two biological replicates for each sample, except wild type whole testes where we performed three. For all ChIP-array experiments, input chromatin was used as the reference control to assay ChIP enrichment. We used Cy3/Cy5-labelled ChIP and input DNA for hybridisation onto Nimblegen arrays, and we performed a Cy3/Cy5 dye swap for one biological replicate of each sample (see supplementary file: GSE39935_README.txt).
Project description:The Drosophila spermatogenesis cell differentiation pathway involves the activation of a large set of genes in primary spermatocytes. Most of these genes are activated by testis-specific TATA-binding protein associated factors (tTAFs). In the current model for the activation mechanism, Polycomb plays a key role silencing these genes in the germline precursors, and tTAF-dependent activation in primary spermatocytes involves the displacement of Polycomb from gene promoters. We investigated the genome-wide binding of Polycomb in wild type and tTAF mutant testes. According to the model we expected to see a clear enhancement in Polycomb binding at tTAF-dependent spermatogenesis genes in tTAF mutant testes. However, we find little evidence for such an enhancement in tTAF mutant testes compared to wild type. To avoid problems arising from cellular heterogeneity in whole testis analysis, we further tested the model by analysing Polycomb binding in purified germline precursors, representing cells before tTAF-dependent gene activation. Although we find Polycomb associated with its canonical targets, we find little or no evidence of Polycomb at spermatogenesis genes. The lack of Polycomb at tTAF-dependent spermatogenesis genes in precursor cells argues against a model where Polycomb displacement is the mechanism of spermatogenesis gene activation.
Project description:Genome wide localization of Kumgang, dMi-2, and Aly in Drosophila melanogaster testes were evaluated by ChIP-Seq in wild-type and kmg knock down testes. / Title: Blocking promiscuous activation at cryptic promoters directs cell type–specific gene expression / Abstract: To selectively express cell type–specific transcripts during development, it is critical to maintain genes required for other lineages in a silent state. Here, we show in the Drosophila male germline stem cell lineage that a spermatocyte-specific zinc finger protein, Kumgang (Kmg), working with the chromatin remodeler dMi-2 prevents transcription of genes normally expressed only in somatic lineages. By blocking transcription from normally cryptic promoters, Kmg restricts activation by Aly, a component of the testis-meiotic arrest complex, to transcripts for male germ cell differentiation. Our results suggest that as new regions of the genome become open for transcription during terminal differentiation, blocking the action of a promiscuous activator on cryptic promoters is a critical mechanism for specifying precise gene activation.
Project description:The piRNA pathway is studied in great detail in Drosophila female germline. In this study we show that unlike the female germline where all Piwi proteins are expressed throughout oogenesis, Ago3 - a Piwi family protein shows a spatial expression male germline. To understand dynamics of piRNA pathway during spermatogonia and primary spermatocyte stages of male germline development, we used arrest mutants. The bag of marbles (bam) and benign gonial cell neoplasm (bgcn) mutants have only early mitotic dividing germline cells in the testes due to failure to progress to primary spermatocyte stage, the cannonball (can) and spermatocyte arrest (sa) mutant germline cells cannot progress beyond primary spermatocyte stage. To investigate the dynamics of the piRNA pathway during spermatogenesis in spermatogonia and primary spermatocyte stages, we used testicular tissues from these stage-specific arrested mutants. While we used entire bam and bgcn mutant testes for spermatogonia purification, we while we manually removed the apical regions of can and sa mutant testes to exclude mitotically dividing undifferentiated germline cells for primary spermatocytes purification. Our results show that piRNAs mapping to transposons are more abundant in spermatogonia, whereas those mapping to Suppressor of Stellate [Su(Ste)] and AT-chX are mostly expressed in primary spermatocytes. Furthermore we observed that transposon-mapping piRNAs with ping-pong signature are more abundant in spermatogonia albeit still detectable in primary spermatocytes where Ago3 is not expressed. These results suggest that robust piRNA production via ping-pong cycle takes place in spermatogonia, and to a lesser extent in primary spermatocytes even in the absence of Ago3. Consistently, piRNAs from ago3 mutant testes also exhibit the ping-pong signature, confirming that a non-canonical ping-pong cycle is acting during spermatogenesis. Our study provides a developmental dimension to the piRNA pathway and uncovers a new mechanism used in the male germline to silence transposons.
Project description:The piRNA pathway is studied in great detail in Drosophila female germline. In this study we show that unlike the female germline where all Piwi proteins are expressed throughout oogenesis, Ago3 - a Piwi family protein shows a spatial expression male germline. To understand dynamics of piRNA pathway during spermatogonia and primary spermatocyte stages of male germline development, we used arrest mutants. The bag of marbles (bam) and benign gonial cell neoplasm (bgcn) mutants have only early mitotic dividing germline cells in the testes due to failure to progress to primary spermatocyte stage, the cannonball (can) and spermatocyte arrest (sa) mutant germline cells cannot progress beyond primary spermatocyte stage. To investigate the dynamics of the piRNA pathway during spermatogenesis in spermatogonia and primary spermatocyte stages, we used testicular tissues from these stage-specific arrested mutants. While we used entire bam and bgcn mutant testes for spermatogonia purification, we while we manually removed the apical regions of can and sa mutant testes to exclude mitotically dividing undifferentiated germline cells for primary spermatocytes purification. Our results show that piRNAs mapping to transposons are more abundant in spermatogonia, whereas those mapping to Suppressor of Stellate [Su(Ste)] and AT-chX are mostly expressed in primary spermatocytes. Furthermore we observed that transposon-mapping piRNAs with ping-pong signature are more abundant in spermatogonia albeit still detectable in primary spermatocytes where Ago3 is not expressed. These results suggest that robust piRNA production via ping-pong cycle takes place in spermatogonia, and to a lesser extent in primary spermatocytes even in the absence of Ago3. Consistently, piRNAs from ago3 mutant testes also exhibit the ping-pong signature, confirming that a non-canonical ping-pong cycle is acting during spermatogenesis. Our study provides a developmental dimension to the piRNA pathway and uncovers a new mechanism used in the male germline to silence transposons. The difference in piRNA from spermatogonia and primary spermatocyte stages was studied by comparing small RNAs from bam and bgcn mutant testis, which represent spermatogonia stages with the small RNAs from apex removed can and sa testis, representing primary spermatocyte stages. In the study we also studied effect of loss of Piwi family proteins Aub and Ago3, which have different spatial expression during male germline development.