Project description:Here we use ChIP-seq in Drosophila embryos to determine the genome-wide binding pattern of TBP and Trf2 using two different antibodies for each factor. ChIP-seq using anti-Trf2 and anti-TBP antibodies in Drosophila embryos
Project description:Here we use ChIP-seq in Drosophila embryos to determine the genome-wide binding pattern of TBP and Trf2 using two different antibodies for each factor.
Project description:The transcriptional mechanisms that allow neural stem cells (NSC) to balance self-renewal with differentiation are not well understood. We identify here a unique subset of TATA -binding protein associated factors (TAFs) as NSC identity genes in Drosophila. We found that depletion of any one of nine TAFs or the TBP-related factor 2 (TRF2), resulted in fewer NSCs exhibiting delayed cell cycle progression without impacting NSC survival. In contrast, depletion of TBP led to a delay in NSC cell cycle progression without loss of self-renewal. An integrated RNA-seq and DamID analysis revealed that TAFs function with both TBP and TRF2, and that TAF-TBP and TAF-TRF2 shared targets genes encode different subsets of transcription factors and RNA-binding proteins with established or emerging roles in NSC identity and brain development. Taken together, our results demonstrate that core promoter factors are selectively required for NSC identity in vivo by promoting cell cycle progression, NSC cell polarity and by preventing premature differentiation. Because pathogenic variants in TAF1, TAF2, TAF6, TAF8 and TAF13 have all been linked to human neurological disorders, this work may stimulate and inform future animal models of TAF-linked neurological disorders.
Project description:The transcriptional mechanisms that allow neural stem cells (NSC) to balance self-renewal with differentiation are not well understood. We identify here a unique subset of TATA -binding protein associated factors (TAFs) as NSC identity genes in Drosophila. We found that depletion of any one of nine TAFs or the TBP-related factor 2 (TRF2), resulted in fewer NSCs exhibiting delayed cell cycle progression without impacting NSC survival. In contrast, depletion of TBP led to a delay in NSC cell cycle progression without loss of self-renewal. An integrated RNA-seq and DamID analysis revealed that TAFs function with both TBP and TRF2, and that TAF-TBP and TAF-TRF2 shared targets genes encode different subsets of transcription factors and RNA-binding proteins with established or emerging roles in NSC identity and brain development. Taken together, our results demonstrate that core promoter factors are selectively required for NSC identity in vivo by promoting cell cycle progression, NSC cell polarity and by preventing premature differentiation. Because pathogenic variants in TAF1, TAF2, TAF6, TAF8 and TAF13 have all been linked to human neurological disorders, this work may stimulate and inform future animal models of TAF-linked neurological disorders.
Project description:Ribosomal protein (RP) genes must be coordinately expressed for proper assembly of the ribosome yet the mechanisms that control expression of RP genes in metazoans are poorly understood. Recently, TATA-Binding Protein-related factor 2 (TRF2) rather than the TATA-Binding Protein (TBP) was found to function in transcription of RP genes in Drosophila. Unlike TBP, TRF2 lacks sequence-specific DNA binding activity, so the mechanism by which TRF2 is recruited to promoters is unclear. We show that the transcription factor M1BP, which associates with the core promoter region, activates transcription of RP genes. Moreover, M1BP directly interacts with TRF2 to recruit it to the RP gene promoter. High resolution ChIP-exo was used to analyze in vivo the association of M1BP, TRF2, and the TFIID subunit, TAF1. Despite recent work suggesting that TFIID does not associate with RP genes in Drosophila, we find that TAF1 is present at RP gene promoters and that its interaction might also be directed by M1BP. Although M1BP associates with thousands of genes and TRF2 associates with hundreds, their colocalization is largely restricted to RP genes, suggesting that this combination is key to coordinately regulating transcription of the majority of RP genes in Drosophila.