Project description:The exon junction complex (EJC) is composed of three core proteins Rbm8a, Magoh and Eif4a3 and is thought to play a role in several post-transcriptional processes. In this study we focus on understanding the role of EJC in zebrafish development. We identified transcriptome-wide binding sites of EJC in zebrafish via RNA:protein immunoprecipitation followed by deep sequencing (RIP-Seq). We find that, as in human cells, zebrafish EJC is deposited about 24 nts upstream of exon-exon junctions. We also identify transcripts regulated by Rbm8a and Magoh in zebrafish embryos using whole embryo RNA-seq from rbm8a mutant, magoh mutant and wild-type sibling embryos. This study shows that nonsense mediated mRNA decay is dysregulated in zebrafish EJC mutants.
Project description:Purpose: Construction of 3D zebrafish spatial transcriptomics data for studying the establishment of AP axis. Methods: We performed serial bulk RNA-seq data of zebrafish embryo at three development points. Using the published spatial transcriptomics data as references, we implemented Palette to infer spatial gene expression from bulk RNA-seq data and constructed 3D embryonic spatial transcriptomics. The constructed 3D transcriptomics data was then projected on zebrafish embryo images with 3D coordinates, establishing a spatial gene expression atlas named Danio rerio Asymmetrical Maps (DreAM). Results: DreAM provides a powerful platform for visualizing gene expression patterns on zebrafish morphology and investigating spatial cell-cell interactions. Conclusions: Our work used DreAM to explore the establishment of anteroposterior (AP) axis, and identified multiple morphogen gradients that played essential roles in determining cell AP positions. Finally, we difined a hox score, and comprehensively demonstrated the spatial collinearity of Hox genes at single-cell resolution during development.
Project description:Profiling hepatic microRNAs in zebrafish: Fluoxetine exposure mimics a fasting response that targets AMP-activated protein kinase (AMPK)
Project description:This study sought to evaluate the effects of dietary MeHg exposure on adult female yellow perch (Perca flavescens) and zebrafish (Danio rerio) reproduction by relating controlled exposures with subsequent reproductive effects. Yellow perch were used in the study for their socioeconomic and ecological importance within the Great Lakes basin, and the use of zebrafish allowed for a detailed analysis of the molecular effects of MeHg. MeHg exposures at environmentally relevant levels were done in zebrafish for a full life cycle, mimicking a realistic exposure scenario, and in adult yellow perch for twenty weeks, capturing early seasonal ovarian development. In zebrafish, several genes involved in reproductive processes were shown to be dysregulated by RNA-seq and QPCR, but no significant phenotypic or physiological changes were observed with ovarian staging, fecundity, or embryo mortality. Yellow perch did not appear to be affected by MeHg, either at a molecular level, as assessed by QPCR of eight genes in the pituitary, liver, and ovary tissue, or a physiological level, as seen with ovarian somatic index, circulating estradiol, and ovarian staging. Lack of impact in yellow perch limits the usefulness of zebrafish as a model and suggests that the reproductive sensitivity to environmentally relevant levels of MeHg differs between yellow perch and zebrafish.
Project description:Methylmercury (MeHg) is a ubiquitous environmental toxicant that is often detected in the tissues of fish-eating species. It has been well established that prenatal exposure to MeHg can lead to widespread brain damage and impaired neurological development resulting in defects ranging from severe cerebral palsy and cognitive deficits to impaired motor and sensory function. A wide range of environmental toxicants have been shown to induce transgenerational inheritance of diseases via changes in DNA methylation—a well-known epigenetic modification. Our previous research has demonstrated that developmental MeHg exposure may yield transgenerational inheritance of neurological dysfunction in adult F3-lineage zebrafish via quantitative neurobehavioral assays that evaluated the visual startle response, retinal electrophysiology, and locomotor function. The objective of the current study was to examine the correlation between neurobehavioral phenotypes and the transcriptome activity in the brain and retina of F3 zebrafish by RNA sequencing (RNAseq). Transcriptomic analyses of F3 generation MeHg-treated zebrafish (compared to control) revealed significant gene dysregulation in both the brain and retina. There were 1648 and 138 differentially expressed genes in the retina and brain, respectively (FDR <0.05). Thirty-five genes were commonly dysregulated in both organs. Gene set enrichment analysis revealed significantly enriched pathways including: neurodevelopment, visual functions, phototransduction, and motor movement. Moreover, commonly dysregulated genes were associated with circadian rhythm and metabolic pathways, as well as arginine and proline metabolism. To our knowledge, this is the first evidence of a transgenerational transcriptome induced by ancestral developmental exposure to MeHg in any species. If the transgenerational phenotypes, transcriptome, homologous biomarkers, or similar molecular pathways hold true for human populations, our findings have significant impact on global public health in terms of identifying the susceptible populations using biomarkers and preventing transgenerational inheritance of MeHg-induced neurobehavioral deficits.
Project description:Methylmercury (MeHg) is a ubiquitous environmental toxicant that is often detected in the tissues of fish-eating species. It has been well established that prenatal exposure to MeHg can lead to widespread brain damage and impaired neurological development resulting in defects ranging from severe cerebral palsy and cognitive deficits to impaired motor and sensory function. A wide range of environmental toxicants have been shown to induce transgenerational inheritance of diseases via changes in DNA methylation—a well-known epigenetic modification. Our previous research has demonstrated that developmental MeHg exposure may yield transgenerational inheritance of neurological dysfunction in adult F3-lineage zebrafish via quantitative neurobehavioral assays that evaluated the visual startle response, retinal electrophysiology, and locomotor function. The objective of the current study was to examine the correlation between neurobehavioral phenotypes and the transcriptome activity in the brain and retina of F3 zebrafish by RNA sequencing (RNAseq). Transcriptomic analyses of F3 generation MeHg-treated zebrafish (compared to control) revealed significant gene dysregulation in both the brain and retina. There were 1648 and 138 differentially expressed genes in the retina and brain, respectively (FDR <0.05). Thirty-five genes were commonly dysregulated in both organs. Gene set enrichment analysis revealed significantly enriched pathways including: neurodevelopment, visual functions, phototransduction, and motor movement. Moreover, commonly dysregulated genes were associated with circadian rhythm and metabolic pathways, as well as arginine and proline metabolism. To our knowledge, this is the first evidence of a transgenerational transcriptome induced by ancestral developmental exposure to MeHg in any species. If the transgenerational phenotypes, transcriptome, homologous biomarkers, or similar molecular pathways hold true for human populations, our findings have significant impact on global public health in terms of identifying the susceptible populations using biomarkers and preventing transgenerational inheritance of MeHg-induced neurobehavioral deficits.