Project description:A consistent clinical feature of amyotrophic lateral sclerosis (ALS) is the sparing of eye movements. Pathological studies have confirmed that there is relative sparing of the cranial motor nuclei of the oculomotor, trochlear and abducens nerves, although pathological changes resembling those seen in anterior horn cells are present to a lesser degree. The aim of the present study is to combine LCM and microarray analysis to study the differences between motor neurons that are selectively resistant (oculomotor neurons) and those that are vulnerable (lumbar spinal motor neurons) to the disease process in amyotrophic lateral sclerosis. We used microarray analysis to determine the differences in gene expression between oculomotor and lumbar spinal motor neurons, isolated by laser capture microdissection from the midbrain and spinal cord of neurologically normal human controls.
Project description:A consistent clinical feature of amyotrophic lateral sclerosis (ALS) is the sparing of eye movements. Pathological studies have confirmed that there is relative sparing of the cranial motor nuclei of the oculomotor, trochlear and abducens nerves, although pathological changes resembling those seen in anterior horn cells are present to a lesser degree. The aim of the present study is to combine LCM and microarray analysis to study the differences between motor neurons that are selectively resistant (oculomotor neurons) and those that are vulnerable (lumbar spinal motor neurons) to the disease process in amyotrophic lateral sclerosis.
Project description:Amyotrophic lateral sclerosis is a fatal neurodegenerative disorder primarily characterized by motor neuron degeneration with additional involvement of non-neuronal cells, in particular, microglia. In our previous work, we have established protocols for the differentiation of iPSC-derived spinal motor neurons and microglia. Here, we combine both cell lineages and establish a novel co-culture of iPSC-derived motor neurons and microglia, which is compatible with motor neuron identity and function. Co-cultured microglia express key microglial markers and transcriptomically resemble primary human microglia, have highly dynamic ramifications, are phagocytic, release various cytokines and respond to stimulation. Further, they express key amyotrophic lateral sclerosis-associated genes and release disease-relevant biomarkers. This novel and authentic human model system facilitates the study of physiological motor neuron-microglia crosstalk and permits the investigation of non-cell-autonomous phenotypes in amyotrophic lateral sclerosis.
Project description:Gene expression profiles of specific neuronal populations might explain differential vulnerability to neurodegeneration in the lethal disease amyotrophic lateral sclerosis (ALS). Using laser capture microscopy (LCM) and RNA sequencing (LCM-seq), we demonstrate that the molecular signature of degeneration-resistant oculomotor neurons (OMNs) is distinct from that of vulnerable spinal motor neurons (MNs).
Project description:Amyotrophic lateral sclerosis and primary lateral sclerosis are two syndromic variants within the motor neurone disease spectrum. Whilst primary lateral sclerosis is associated with loss of upper motor neurons and a more benign disease course up to 17yrs, amyotrophic lateral sclerosis is caused by loss of both upper and lower motor neurons and has an average disease course of 2-3 years. The majority of cases are sporadic, thereby limiting the availability of cellular models for investigating pathogenic disease mechanisms. The aim of the present study was to evaluate fibroblasts as a cellular model for sporadic amyotrophic lateral sclerosis and primary lateral sclerosis, to establish whether disease-related dysregulated biological processes recapitulate those seen in the central nervous system and to elucidate pathways that distinguish between the two disease phenotypes. We used microarray analysis to determine the differences in gene expression between fibroblasts derived from skin biopsies taken from sporadic amyotrophic lateral sclerosis and primary lateral sclerosis neurologically normal human controls
Project description:Spinal muscular atrophy (SMA) is a neurodegenerative disease which exhibits selective motor neuron death caused by a ubiquitous deficiency of the survival motor neuron (SMN) protein. It remains unclear how the ubiquitous reduction of SMN lead to death in selective motor neuron pools. Medial motor neuron columns (MMC) are vulnerable, whereas lateral motor columns (LMC) are resistant to motor neuron death in SMA. Here we performed microarray and pathway analysis comparing cholera toxin subunit B (CTb) labeled vulnerable MMC and resistant LMC of pre-symptomatic SMA with corresponding motor neuron columns of control mice to identify pathways involved in selective motor neuron death in SMA. WT is FVB. SMN is Delta7 (SMNΔ7;SMN2;Smn-) on a FVB background.
Project description:To identify molecular differences between closely related motor neurons relevant for understanding of neurodegenerative diseases, such as Amyotrophic Lateral Sclerosis (ALS), we exploited induced cranial and spinal motor neuron populations from mouse embryonic stem cells. We performed a large scale time-dependent TMT-based proteomics analysis in the presence and absence of protein misfolding stress. We profiled ~8,600 proteins from two different motor neuron cell lines, measured in two replicates and three time points.
Project description:Amyotrophic lateral sclerosis and primary lateral sclerosis are two syndromic variants within the motor neurone disease spectrum. Whilst primary lateral sclerosis is associated with loss of upper motor neurons and a more benign disease course up to 17yrs, amyotrophic lateral sclerosis is caused by loss of both upper and lower motor neurons and has an average disease course of 2-3 years. The majority of cases are sporadic, thereby limiting the availability of cellular models for investigating pathogenic disease mechanisms. The aim of the present study was to evaluate fibroblasts as a cellular model for sporadic amyotrophic lateral sclerosis and primary lateral sclerosis, to establish whether disease-related dysregulated biological processes recapitulate those seen in the central nervous system and to elucidate pathways that distinguish between the two disease phenotypes.