Project description:Transcriptomics by RNA-seq provides unparalleled insight into bacterial gene expression networks, enabling a deeper understanding of the regulation of pathogenicity, mechanisms of antimicrobial resistance, metabolism, and other cellular processes. Here we present the transcriptome architecture of Acinetobacter baumannii ATCC 17978, a species emerging as a leading cause of antimicrobial resistant nosocomial infections. Differential RNA-seq (dRNA-seq) examination of model strain ATCC 17978 in 16 laboratory conditions identified 3731 transcriptional start sites (TSS), and 110 small RNAs, including the first identification of 22 sRNA encoded at the 3′ end of mRNA.
Project description:We report the trascriptomic information of wild type (Lab-WT) during the growth with or without 0.5 MIC of polymyxin B added LB (Luria-Bertani broth) media
Project description:We performed RNA sequencing analysis with differential expression analysis to compare the expression of genes between A. baumannii 17978 wildtype strain grown in the light and the dark. The purpose was to determine any genes whose expression was mediated by light at 37ºC, a temperature at which the currently best studied photoreceptor for A. baumannii BlsA, is unfunctional.
Project description:Acinetobacter baumannii is a notorious opportunistic pathogen that is prevalent mainly in hospital settings. The ability of A. baumannii to adapt and to survive in a range of environments has been a key factor for its persistence and success as an opportunistic pathogen. In this study, we investigated the effect of temperature on the clinically relevant phenotypes displayed by A. baumannii at 37°C and 28°C. Surface-associated motility was significantly reduced at 28°C, while biofilm formation on plastic surfaces was increased at 28°C. Decreased susceptibility to aztreonam and increased susceptibility to trimethoprim-sulfamethoxazole were observed at 28°C. No differences in virulence, as assayed in a Galleria mellonella model, were observed. Proteomic analysis showed differential expression of 629 proteins, of which 366 were upregulated and 263 were downregulated at 28°C. Upregulation of the Csu and iron uptake proteins at 28°C was a key finding for understanding some of the phenotypes displayed by A. baumannii at 28°C.
Project description:We present the first high-resolution determination of transcriptome architecture in the priority pathogen Acinetobacter baumannii. Pooled RNA from 16 laboratory conditions was used for differential RNA-seq (dRNA-seq) to identify 3731 transcriptional start sites (TSS) and 110 small RNAs, including the first identification in A. baumannii of sRNAs encoded at the 3' end of coding genes. Most sRNAs were conserved among sequenced A. baumannii genomes, but were only weakly conserved or absent in other Acinetobacter species. Single nucleotide mapping of TSS enabled prediction of -10 and -35 RNA polymerase binding sites and revealed an unprecedented base preference at position +2 that hints at an unrecognized transcriptional regulatory mechanism. To apply functional genomics to the problem of antimicrobial resistance, we dissected the transcriptional regulation of the drug efflux pump responsible for chloramphenicol resistance, craA. The two craA promoters were both down-regulated >1000-fold when cells were shifted to nutrient limited medium. This conditional down-regulation of craA expression renders cells sensitive to chloramphenicol, a highly effective antibiotic for the treatment of multidrug resistant infections. An online interface that facilitates open data access and visualization is provided as 'AcinetoCom' (http://bioinf.gen.tcd.ie/acinetocom/).
Project description:Acinetobacter baumannii is a nosocomial pathogen that exhibits substantial genomic plasticity. Here, the identification of two variants of A. baumannii ATCC 17978 that differ based on the presence of a 44-kb accessory locus, named AbaAL44 (A. baumannii accessory locus 44 kb), is described. Analyses of existing deposited data suggest that both variants are found in published studies of A. baumannii ATCC 17978 and that American Type Culture Collection (ATCC)-derived laboratory stocks comprise a mix of these two variants. Yet, each variant exhibits distinct interactions with the host in vitro and in vivo. Infection with the variant that harbors AbaAL44 (A. baumannii 17978 UN) results in decreased bacterial burdens and increased neutrophilic lung inflammation in a mouse model of pneumonia, and affects the production of interleukin 1 beta (IL-1β) and IL-10 by infected macrophages. AbaAL44 harbors putative pathogenesis genes, including those predicted to encode a type I pilus cluster, a catalase, and a cardiolipin synthase. The accessory catalase increases A. baumannii resistance to oxidative stress and neutrophil-mediated killing in vitro. The accessory cardiolipin synthase plays a dichotomous role by promoting bacterial uptake and increasing IL-1β production by macrophages, but also by enhancing bacterial resistance to cell envelope stress. Collectively, these findings highlight the phenotypic consequences of the genomic dynamism of A. baumannii through the evolution of two variants of a common type strain with distinct infection-related attributes.
Project description:A. baumannii ATCC 17978 cells were incubated under iron replete (mueller-hinton) and iron limiting (MH + 200 µM 2,2'-dipyridyl) conditions, total RNA was extracted when cultures reached OD600=0.7.
Project description:A. baumannii ATCC 17978 cells were incubated under iron replete (mueller-hinton) and iron limiting (MH + 200 µM 2,2'-dipyridyl) conditions, total RNA was extracted when cultures reached OD600=0.7. The probes on the microarray cover all predicted open reading frames (at least 4 per ORF) and additional replicates of housekeeping genes of the A. baumannii ATCC 17978 genome