Project description:Genome-wide DNA methylation profiling of young men born with low birth weight following a control and high-fat overfeeding diet using Illumina's Infinium 27k Human DNA methylation Beadchip v. 1.2. DNA methylation profiles were obtained for 27,578 CpG sites in human skeletal muscle. Randomized cross-over desgin, where all subjects receieved both treatments (control and high-fat overfeeding diet). Biopsies were obtained from 17 different individuals amounting to 16 samples following the control diet and 15 samples following the high-fat overfeeding diet (paired n=14). Bisulphite converted DNA from the 31 samples were hybridised to the Illumina Infinium 27k Human Methylation Beadchip.
Project description:Genome-wide DNA methylation profiling of young men born with low birth weight following a control and high-fat overfeeding diet using Illumina's Infinium 27k Human DNA methylation Beadchip v. 1.2. DNA methylation profiles were obtained for 27,578 CpG sites in human skeletal muscle.
Project description:Genome-wide DNA methylation profiling of healthy young men following a control and high-fat overfeeding diet using Illumina's Infinium 27k Human DNA methylation Beadchip v. 1.2. DNA methylation profiles were obtained for 27,578 CpG sites in human skeletal muscle. Randomized cross-over desgin, where all subjects receieved both treatments (control and high-fat overfeeding diet). Biopsies were obtained from 23 different individuals amounting to 22 samples following the control diet and 22 samples following the high-fat overfeeding diet (paired n=21). Bisulphite converted DNA from the 44 samples were hybridised to the Illumina Infinium 27k Human Methylation Beadchip.
Project description:Genome-wide DNA methylation profiling of healthy young men following a control and high-fat overfeeding diet using Illumina's Infinium 27k Human DNA methylation Beadchip v. 1.2. DNA methylation profiles were obtained for 27,578 CpG sites in human skeletal muscle.
Project description:The popularity of high fat foods in modern society has been associated with epidemic of various metabolic diseases characterized by insulin resistance, the pathology of which involves complex interactions between multiple tissues such as liver, skeletal muscle and white adipose tissue (WAT). To uncover the mechanism by which excessive fat impairs insulin sensitivity, we conducted a multi- tissue study by using TMT-based quantitative proteomics. 3-week-old ICR mice were fed with high fat diet (HFD) for 19 weeks to induce insulin resistance. Liver, skeletal muscle and epididymal fat were collected for proteomics screening. Additionally, PRM was used for validating adipose differential proteins. By comparing tissue-specific protein profiles of HFD mice, multi-tissue regulation of glucose and lipid homeostasis and corresponding underlying mechanisms was systematically investigated and characterized. NC: normal birth weight + chow diet; NH: normal birth weight + high fat diet; LC: low birth weight + chow diet; LH: low birth weight + high fat diet.
Project description:Experimental overfeeding triggers homeostatic compensatory mechanisms that counteract weight gain. Here, we utilized intragastric overfeeding in mice to investigate the physiological and molecular responses to forced weight gain. Both lean and diet-induced obese (DIO) mice exhibited a potent and prolonged lowering of voluntary food intake following overfeeding-induced weight gain. Although overfeeding resulted in a marked increase in circulating fibroblast growth factor 21 (FGF21), experiments with FGF21 knockout (KO) mice demonstrated that FGF21 is dispensable for the homeostatic defense against experimental weight gain. Targeted proteomics unveiled novel circulating factors linked to overfeeding, including the protease legumain (LGMN). Notably, administration of recombinant LGMN lowered body weight and food intake in DIO mice. The protection against weight gain was also associated with reduced vascularization in the hypothalamus and sustained reductions in transcript levels of the orexigenic neuropeptides, Npy and AgRP, suggesting a role of hypothalamic signaling in the homeostatic recovery from overfeeding. Overfeeding of melanocortin 4 receptor (MC4R) KO mice showed that these mice can suppress voluntary food intake and counteract the enforced weight gain, although their rate of weight recovery is impaired. Collectively, these findings demonstrate that the defense against overfeeding-induced weight gain remains intact in obesity and involves mechanisms independent of both FGF21 and MC4R.
Project description:To profile the expression of circulating miRNAs in a mouse model of diet-induced obesity (DIO) with subsequent weight-reduction with low-fat diet (LFD), eighteen C57BL/6 male mice were grouped into three subgroups as: (1) Control: the mice fed with the standard AIN-76A (fat: 11.5 kcal%) diet for 12 wks; (2) DIO: the mice fed with 58 kcal% high-fat diet for 12 wks; (3) DIO+LFD: the mice fed with high-fat diet for 8 wks to induce obesity, then changed to 10.5 kcal% low-fat diet for subsequent 4 wks.
Project description:Low protein (LP) during gestation leads to low birth weight and poor fetal growth, with altered islet development and glucose intolerance in adulthood. Additionally, LP offspring fail to regenerate their β-cells following depletion with streptozotocin (STZ), in contrast to control-fed offspring that are capable of β-cell regeneration. Our objective was to identify genes and signalling pathways that may be critically altered in LP offspring rendering them susceptible to develop long term glucose intolerance and decreased β-cell plasticity. Pregnant Balb/C mice were place on a control (20% protein) or isocaloric low protein (8%) diet for the period of gestation, and then all dams were switch to the control diet at birth. Female offspring were injected with streptozotocin (35 mg/kg body weight; sodium citrate buffer 0.1 mol/L, pH 4.5) or vehicle (sham). Total RNA was extracted from pancreas of 30 day old female offspring (n=3) and hybridized to Affymetrix GeneChips.
Project description:lean control, obese, and formerly obese C57BL6N mice which underwent weight loss via low-fat diet or verticle sleeve gastrectomy were injected with E0771 cells and tumor growth was monitored