Project description:Aberrant activation of FGFR3 via overexpression or mutation is a frequent feature of bladder cancer; however, its molecular and cellular consequences and functional relevance to carcinogenesis are not well understood. In this study with a bladder carcinoma cell line expressing inducible FGFR3 shRNAs, we sought to identiy transcriptional targets of FGFR3 and investigate their contribution to bladder cancer development. Bladder cancer cell line RT112 was transduced with a doxycycline-inducible control EGFP shRNA or three independent FGFR3 shRNAs, designated FGFR3 shRNA 2-4, FGFR3 shRNA 4-1 and FGFR3 shRNA 6-16. These four cell lines were treated with or without doxycycline for 48 hr to deplete FGFR3 protein prior to the isolation of mRNA for microarray analysis. Genes that were differentially expressed after doxycycline induction in all three FGFR3-depleted cell lines but not in the control cell line were considered potential FGFR3-regulated genes. Each treatment group was run in triplcates, and there are 24 samples.
Project description:To better understand the molecular mechanisms underlying altered-FGFR3 oncogenic activity in bladder carcinomas, we made use of RT112 cell lines, which were derived from a human bladder tumor and endogenously expressed the FGFR3-TACC3 fusion protein, the growth and transformation of these cell lines being dependent on activated-FGFR3 activity. We conducted a gene expression analysis using Affymetrix DNA arrays in this cell line treated or not with FGFR3 siRNAs.
Project description:In this research, Human OneArray Microarray analysis was performed to obtain broad spectrum information about the genes differentially expressed in human bladder cancer cell line RT112 and Gemcitabine Resistant Bladder Cancer cell line RT112-Gr.
Project description:We hypothesized that ETV5 may be a mediator of the oncogenic effects of mutant FGFR3 in bladder cancer cells ETV5 was silenced by shRNA in the bladder cancer cell line 97-7 to investigate effect on phenotype. To identify downstream gene targets of ETV5 we compared gene expression profiles in silenced and control cells.
Project description:Aberrant activation of FGFR3 via overexpression or mutation is a frequent feature of bladder cancer; however, its molecular and cellular consequences and functional relevance to carcinogenesis are not well understood. In this study with a bladder carcinoma cell line expressing inducible FGFR3 shRNAs, we sought to identiy transcriptional targets of FGFR3 and investigate their contribution to bladder cancer development.
Project description:Expression array data was used to compare parental FGFR3-TACC3 fusion-driven urothelial cell lines with their FGFR inhibitor-resistant derivatives. In this dataset, we include RT112 and RT4 parental cells, RT112 cells acutely treated with PD173074 (24 h), RT112 and RT4 resistant derivatives cultured with drug and their resistant derivatives cultured for four to six passages out of drug.
Project description:Bladder cancer prognosis is closely linked to the underlying differentiation state of the tumor, ranging from the less aggressive and most differentiated luminal tumors to the more aggressive and least differentiated basal tumors. Sequencing of bladder cancer has revealed that loss-of-function mutations in chromatin regulators and mutations that activate receptor tyrosine kinase (RTK) signaling frequently occur in bladder cancer. However, little is known as to whether and how these two types of mutations functionally interact or cooperate to regulate tumor growth and differentiation state. Here, we focus on loss of the histone demethylase UTX (also known as KDM6A) and activation of the RTK FGFR3, two events that commonly co-occur in muscle invasive bladder tumors. We show that UTX loss and FGFR3 activation cooperate to disrupt the balance of luminal and basal gene expression in bladder cells. UTX localized to enhancers surrounding many genes that are important for luminal cell fate, and supported the transcription of these genes in a catalytic-independent manner. In contrast to UTX, FGFR3 activation was associated with lower expression of luminal genes in tumors and FGFR inhibition increased transcription of these same genes in cell culture models. This suggests an antagonistic relationship between UTX and FGFR3. In support of this model, UTX loss-of-function potentiated FGFR3-dependent transcriptional effects and the presence of UTX blocked an FGFR3-mediated increase in the colony formation of bladder cells. Taken together, our study reveals how mutations in UTX and FGFR3 converge to disrupt bladder differentiation programs that could serve as a therapeutic target.
Project description:Bladder cancer prognosis is closely linked to the underlying differentiation state of the tumor, ranging from the less aggressive and most differentiated luminal tumors to the more aggressive and least differentiated basal tumors. Sequencing of bladder cancer has revealed that loss-of-function mutations in chromatin regulators and mutations that activate receptor tyrosine kinase (RTK) signaling frequently occur in bladder cancer. However, little is known as to whether and how these two types of mutations functionally interact or cooperate to regulate tumor growth and differentiation state. Here, we focus on loss of the histone demethylase UTX (also known as KDM6A) and activation of the RTK FGFR3, two events that commonly co-occur in muscle invasive bladder tumors. We show that UTX loss and FGFR3 activation cooperate to disrupt the balance of luminal and basal gene expression in bladder cells. UTX localized to enhancers surrounding many genes that are important for luminal cell fate, and supported the transcription of these genes in a catalytic-independent manner. In contrast to UTX, FGFR3 activation was associated with lower expression of luminal genes in tumors and FGFR inhibition increased transcription of these same genes in cell culture models. This suggests an antagonistic relationship between UTX and FGFR3. In support of this model, UTX loss-of-function potentiated FGFR3-dependent transcriptional effects and the presence of UTX blocked an FGFR3-mediated increase in the colony formation of bladder cells. Taken together, our study reveals how mutations in UTX and FGFR3 converge to disrupt bladder differentiation programs that could serve as a therapeutic target.