Project description:We previously reported that Def (Digestive-organ expansion factor) was a pan-endodermal enriched factor that is essential for the growth of digestive organs in zebrafish using a def mutant line hi429 as model (Chen et al., 2005). To further elucidate Def function, we generated a Def over-expressed zebrafish line, namely Tg (fabp10a:def)-I, in which def expression was under the control of a liver-specific promoter fabp10a. We used microarrays to detail the global programme of gene expression in Tg (fabp10a:def)-I transgenic line compared with wild type zebrafish control, and identified distinct classes of differently regulated genes in Tg (fabp10a:def)-I line.
Project description:We previously reported that Def (Digestive-organ expansion factor) was a pan-endodermal enriched factor that is essential for the growth of digestive organs in zebrafish using a def mutant line hi429 as model (Chen et al., 2005). To further elucidate Def function, we generated a Def over-expressed zebrafish line, namely Tg (fabp10a:def)-I, in which def expression was under the control of a liver-specific promoter fabp10a. We used microarrays to detail the global programme of gene expression in Tg (fabp10a:def)-I transgenic line compared with wild type zebrafish control, and identified distinct classes of differently regulated genes in Tg (fabp10a:def)-I line. Total RNA from the adult livers of three independent batches of 3-month-old Tg(fabp10a:def)-I and wild type (AB strain) male fish was extracted using TRIzol (Invitrogen), each batch with the liver samples from three fish mixed together. The samples were subjected to microarray hybridization and the data were generated for further analysis.
Project description:This project aimed at identifying developmental stage specific transcript profiles for catecholaminergic neurons in embryos and early larvae of zebrafish (Danio rerio). Catecholaminergic neurons were labeled using transgenic zebrafish strains to drive expression of GFP. At stages 24, 36, 72 and 96 hrs post fertilization, embryos were dissociated and GFP expressing cells sorted by FACS. Isolated RNAs were processed using either polyA selection and libray generation or NanoCAGE. This is the first effort to determine stage specific mRNA profiles of catecholaminergic neurons in zebrafish. Catecholaminergic neurons were labeled by four different strategies: (1) 24 hrs old embryos: we used the ETvmat2:GFP transgenic line (Wen et al. 2007). Visualization of monoaminergic neurons and neurotoxicity of MPTP in live transgenic zebrafish. Dev Biol. 2008 Vol 314 p84-92) which at this early stage labels catecholaminergic neurons in posterior tuberculum and locus coeruleus; (2) 24 hrs old embryos: we used Tg(otpb.A:egfp)zc48 transgenic line (Fujimoto et al. Identification of a dopaminergic enhancer indicates complexity in vertebrate dopamine neuron phenotype specification. Dev Biol 2011, Vol 352, p393–404) which at this stage label ventral diencephalic dopaminergic neurons and some preoptic neurons. (3) For 72 and 96 hrs old zebrafish larvae we used a th:GFP BAC transgenic lines that labels catecholaminergic neurons (Tay et al., Comprehensive catecholaminergic projectome analysis reveals single-neuron integration of zebrafish ascending and descending dopaminergic systems. Nat Comms 2011 Vol 2, 171; also: T. Leng and W. Driever, unpublished). (4) for the 36 and 48 hrs old zebrafish larvae we used a th:Gal4VP16 driver and UAS:EGFP responder transgenic line system to label catecholaminergic cells (Fernandes et al., Deep brain photoreceptors control light-seeking behavior in zebrafish larvae. Curr Biol. 2012 Vol 22 DOI 10.1016/j.cub.2012.08.016). We used the different transgenic lines, because lines (3) and (4) do not efficiently label catecholaminergic neurons at early stages, while lines (1) and (2) also have GFP expression in several other non-catecholaminergic populations at later stages of development. Embryos were dissociated and catecholaminergic neurons were FACS sorted from GFP-tagged zebrafish (Manoli and Driever, 2012, Cold Spring Harbor Protoc. DOI 10.1101/pdb.prot069633). RNA was either processed for NanoCAGE, or mRNA was isolated and amplified. cDNA was sequenced by Illumina technique. This data submission is a series of data files consisting of three independent experiments with diffrent RNA-Seq depth: Samples 1-4 (NanoCage): Samples 5-8 (RNA-Seq high read numbers), and SAmples 9-12 (RNA-Seq low read numbers).
Project description:Low temperatures may cause severe growth inhibition and mortality in fish. In order to understand the mechanism of cold tolerance, a transgenic zebrafish Tg (smyd1:m3ck) model was established to study the effect of energy homeostasis during cold stress. The muscle-specific promoter Smyd1 was used to express the carp muscle form III of creatine kinase (M3-CK), which maintained enzymatic activity at a relatively low temperature, in zebrafish skeletal muscle. In situ hybridization showed that M3-CK was expressed strongly in the skeletal muscle. When exposed to 13°C, Tg (smyd1:m3ck) fish maintained their swimming behavior, while the wild-type could not. Energy measurements showed that the concentration of ATP increased in Tg (smyd1:m3ck) versus wild-type fish at 28°C. After 2 h at 13°C, ATP concentrations were 2.16-fold higher in Tg (smyd1:m3ck) than in wild-type (P < 0.05). At 13°C, the ATP concentration in Tg (smyd1:m3ck) fish and wild-type fish was 63.3% and 20.0%, respectively, of that in wild-type fish at 28°C. Microarray analysis revealed differential expression of 1249 transcripts in Tg (smyd1:m3ck) versus wild-type fish under cold stress. Biological processes that were significantly overrepresented in this group included circadian rhythm, energy metabolism, lipid transport, and metabolism. These results are clues to understanding the mechanisms underlying temperature acclimation in fish.
Project description:Low temperatures may cause severe growth inhibition and mortality in fish. In order to understand the mechanism of cold tolerance, a transgenic zebrafish Tg (smyd1:m3ck) model was established to study the effect of energy homeostasis during cold stress. The muscle-specific promoter Smyd1 was used to express the carp muscle form III of creatine kinase (M3-CK), which maintained enzymatic activity at a relatively low temperature, in zebrafish skeletal muscle. In situ hybridization showed that M3-CK was expressed strongly in the skeletal muscle. When exposed to 13M-BM-0C, Tg (smyd1:m3ck) fish maintained their swimming behavior, while the wild-type could not. Energy measurements showed that the concentration of ATP increased in Tg (smyd1:m3ck) versus wild-type fish at 28M-BM-0C. After 2 h at 13M-BM-0C, ATP concentrations were 2.16-fold higher in Tg (smyd1:m3ck) than in wild-type (P < 0.05). At 13M-BM-0C, the ATP concentration in Tg (smyd1:m3ck) fish and wild-type fish was 63.3% and 20.0%, respectively, of that in wild-type fish at 28M-BM-0C. Microarray analysis revealed differential expression of 1249 transcripts in Tg (smyd1:m3ck) versus wild-type fish under cold stress. Biological processes that were significantly overrepresented in this group included circadian rhythm, energy metabolism, lipid transport, and metabolism. These results are clues to understanding the mechanisms underlying temperature acclimation in fish. Gene expression in triplicate samples of m3ck-13M-BM-0C, m3ck-28M-BM-0C, wt-13M-BM-0C, and wt-28M-BM-0C was assessed. Twelve microarray experiments were performed, each with three fish.
Project description:This project aimed at identifying developmental stage specific transcript profiles for catecholaminergic neurons in embryos and early larvae of zebrafish (Danio rerio). Catecholaminergic neurons were labeled using transgenic zebrafish strains to drive expression of GFP. At stages 24, 36, 72 and 96 hrs post fertilization, embryos were dissociated and GFP expressing cells sorted by FACS. Isolated RNAs were processed using either polyA selection and libray generation or NanoCAGE. This is the first effort to determine stage specific mRNA profiles of catecholaminergic neurons in zebrafish.