Project description:Resveratrol has been reported to improve metabolic function in metabolically-abnormal rodents and humans, but has not been studied in non-obese people with normal glucose tolerance. We conducted a randomized, double-blind, placebo-controlled trial to evaluate the metabolic effects of 12 weeks of resveratrol supplementation (75 mg/day) in non-obese, postmenopausal women with normal glucose tolerance. Although resveratrol supplementation was well-tolerated and increased plasma resveratrol concentration without adverse effects, it did not change body composition, resting metabolic rate, plasma lipids, or inflammatory markers. A two-stage hyperinsulinemic-euglycemic clamp procedure, in conjunction with stable isotopically-labeled tracer infusions, demonstrated that resveratrol did not increase liver, skeletal muscle, or adipose tissue insulin sensitivity. Consistent with the absence of in vivo metabolic effects, resveratrol did not affect its putative molecular targets, including AMPK, Sirt1, Nampt, and Pgc-1α, in either skeletal muscle or adipose tissue. These findings demonstrate that resveratrol supplementation does not have metabolic effects in non-obese women. We compared gene expression profile in subcutaneous abdominal adipose tissue and skeletal muscle (vastus lateralis) biopsy samples obtained from non-obese people before and after 1) placebo (PLC), 2) resveratrol (RES), and 3) calorie restriction (CR) intervention.
Project description:Resveratrol has been reported to improve metabolic function in metabolically-abnormal rodents and humans, but has not been studied in non-obese people with normal glucose tolerance. We conducted a randomized, double-blind, placebo-controlled trial to evaluate the metabolic effects of 12 weeks of resveratrol supplementation (75 mg/day) in non-obese, postmenopausal women with normal glucose tolerance. Although resveratrol supplementation was well-tolerated and increased plasma resveratrol concentration without adverse effects, it did not change body composition, resting metabolic rate, plasma lipids, or inflammatory markers. A two-stage hyperinsulinemic-euglycemic clamp procedure, in conjunction with stable isotopically-labeled tracer infusions, demonstrated that resveratrol did not increase liver, skeletal muscle, or adipose tissue insulin sensitivity. Consistent with the absence of in vivo metabolic effects, resveratrol did not affect its putative molecular targets, including AMPK, Sirt1, Nampt, and Pgc-1α, in either skeletal muscle or adipose tissue. These findings demonstrate that resveratrol supplementation does not have metabolic effects in non-obese women.
Project description:Resveratrol is a naturally occurring compound that profoundly affects energy metabolism and mitochondrial function and serves as a calorie restriction mimetic, at least in animal models of obesity. Here we treated 10 healthy, obese men with placebo and 150 mg/day resveratrol in a randomized double-blind cross-over study for 30 days. Resveratrol supplementation significantly reduced sleeping- and resting metabolic rate. In muscle, resveratrol activated AMPK, increased SIRT1 and PGC-1alpha protein levels, increased citrate synthase activity, and improved muscle mitochondrial respiration on a fatty acid-derived substrate. Furthermore, resveratrol elevated intramyocellular lipid levels, and decreased intrahepatic lipid content, circulating glucose, triglycerides, alanine-aminotransferase, and inflammation markers. Systolic blood pressure dropped and HOMA index improved after resveratrol. In the postprandial state, adipose tissue lipolysis and plasma fatty acid and glycerol decreased. In conclusion, we demonstrate that 30 days of resveratrol supplementation induces profound metabolic changes in obese subjects, mimicking the effects of calorie restriction. double-blind randomized cross-over study, Expression profiling by microarray
Project description:Resveratrol is a naturally occurring compound that profoundly affects energy metabolism and mitochondrial function and serves as a calorie restriction mimetic, at least in animal models of obesity. Here we treated 10 healthy, obese men with placebo and 150 mg/day resveratrol in a randomized double-blind cross-over study for 30 days. Resveratrol supplementation significantly reduced sleeping- and resting metabolic rate. In muscle, resveratrol activated AMPK, increased SIRT1 and PGC-1alpha protein levels, increased citrate synthase activity, and improved muscle mitochondrial respiration on a fatty acid-derived substrate. Furthermore, resveratrol elevated intramyocellular lipid levels, and decreased intrahepatic lipid content, circulating glucose, triglycerides, alanine-aminotransferase, and inflammation markers. Systolic blood pressure dropped and HOMA index improved after resveratrol. In the postprandial state, adipose tissue lipolysis and plasma fatty acid and glycerol decreased. In conclusion, we demonstrate that 30 days of resveratrol supplementation induces profound metabolic changes in obese subjects, mimicking the effects of calorie restriction.
Project description:Obesity is associated with a chronic, low-grade, systemic inflammation that may contribute to the development of insulin resistance and type 2 diabetes. Resveratrol, a natural compound with anti-inflammatory properties, is shown to improve glucose tolerance and insulin sensitivity in obese mice and humans. Here we tested the effect of a 2-year resveratrol administration on the pro-inflammatory profile and insulin resistance caused by a high-fat, high-sugar (HFS) diet in white adipose tissue (WAT) from rhesus monkeys. Eighty mg/day of resveratrol for 12-month followed by 480 mg/day for the second year decreased adipocyte size, increased sirtuin 1 expression, decreased NF-kB activation and improved insulin sensitivity in visceral but not subcutaneous WAT from HFS-fed animals. These effects were reproduced in 3T3-L1 adipocytes cultured in media supplemented with serum from monkeys fed HFS +/- resveratrol diets. In conclusion, chronic administration of resveratrol exerts beneficial metabolic and inflammatory adaptations in visceral WAT from diet-induced obese monkeys.
Project description:Here we have from 64 samples, their corresponding fastq and bam files.
The study group consisted of 17 obese women with normal glucose tolerance and 15 obese women with T2DM classified according to WHO standards. The groups were matched for age, BMI and waist circumference. All the women had been morbidly obese (BMI>40 kg/m2) for at least five years.
Project description:The study group consisted of 17 obese women with normal glucose tolerance and 15 obese women with T2DM. Adipose tissue specimens were taken from the epigastric region of the abdominal wall (SAT) and from the major omentum (VAT). RNA was isolated and RNA sequencing was used to analyse the transcriptome. Dharuri H et al, Diabetologia. 2014;57(11):2384-92.
Project description:Studies in rodents have shown obesity and aging impair tissue nicotinamide adenine dinucleotide (NAD+) biosynthesis, which contributes to metabolic dysfunction. The availability of nicotinamide mononucleotide (NMN) is an important rate-limiting factor in mammalian NAD+ biosynthesis. We conducted a 10-week, randomized, placebo-controlled, double-blind trial to evaluate the effect of NMN supplementation on metabolic function in 25 postmenopausal women with prediabetes who were overweight/obese. Insulin-stimulated glucose disposal, assessed by using the hyperinsulinemic-euglycemic-clamp procedure, increased by 25±7% (P<0.01) in the NMN group, which was accompanied by an increase in insulin-stimulated phosphorylation of muscle AKT (P<0.01), whereas neither outcome changed after placebo treatment. Body composition (fat mass, fat-free mass, intra-abdominal fat, intrahepatic triglyceride content) and muscle mitochondrial respiratory capacity did not change after treatment with placebo or NMN. These results demonstrate NMN improves muscle insulin sensitivity in women with prediabetes who are overweight/obese, independent of changes in body composition or mitochondrial function.
Project description:The purpose of this study is to determine if Resveratrol, a nutritional supplement, shows a beneficial effect in the cellular function of normal liver cells and diseased liver cells (cancer cells) in samples of liver tissue taken during elective liver surgery. Outcomes based on 3 measures will test the hypothesis that Resveratrol when used as a nutritional supplement will 1)improve metabolic function in liver cells, 2)reduce cellular growth and proliferation of cancer cells, 3)decrease inflammation in the liver.
Project description:Obesity is associated with a chronic, low-grade, systemic inflammation that may contribute to the development of insulin resistance and type 2 diabetes. Resveratrol, a natural compound with anti-inflammatory properties, is shown to improve glucose tolerance and insulin sensitivity in obese mice and humans. Here we tested the effect of a 2-year resveratrol administration on the pro-inflammatory profile and insulin resistance caused by a high-fat, high-sugar (HFS) diet in white adipose tissue (WAT) from rhesus monkeys. Eighty mg/day of resveratrol for 12-month followed by 480 mg/day for the second year decreased adipocyte size, increased sirtuin 1 expression, decreased NF-kB activation and improved insulin sensitivity in visceral but not subcutaneous WAT from HFS-fed animals. These effects were reproduced in 3T3-L1 adipocytes cultured in media supplemented with serum from monkeys fed HFS +/- resveratrol diets. In conclusion, chronic administration of resveratrol exerts beneficial metabolic and inflammatory adaptations in visceral WAT from diet-induced obese monkeys. Twenty-four adult (7-13 years old) male rhesus monkeys (Macaca mulatta) were housed individually in standard nonhuman primate caging on a 12h light/12h dark cycle, room temperature (78 +/- 2 degrees F), and humidity at 60 +/- 20%. One pairing was maintained throughout the study; all other monkeys had extensive visual, auditory, and olfactory but limited tactile contact with monkeys housed in the same room. Monkeys received 2 meals per day at estimated ad libitum levels throughout the study. Water was always available ad libitum. Monkeys were monitored minimally 3 times daily by trained animal care staff. During baseline assessments, all monkeys were maintained on a commercially available closed formula monkey chow. After baseline assessment, four male rhesus monkeys remained on the healthy standard diet (SD), 10 male rhesus monkeys were begun on a high fat/high sucrose (HFS) diet and 10 male rhesus monkeys were begun on a high fat/high sucrose (HFS) diet plus Resveratrol, 80mg/day. After one year of dietary intervention, the amount of resveratrol was increased to 480mg/day for one additional year. Tissues were then harvested for the array experiments.