Project description:Polycomb group proteins are transcriptional repressors that play essential roles in regulating genes required for differentiation and embryonic development. The Polycomb repressive complex 2 (PRC2) contains the methyltransferase activity for lysine 27 on histone 3 (H3K27me3), which is a docking site for the PRC1 complex and leads to gene repression. However, the role of other histone modifications in regulating PRC2 activity is just beginning to be understood. Here we show that direct recognition of histone H3 methylated at lysine 36 (H3K36me), an mark associated with activation, by the PRC2 subunit Phf19 is required for the full enzymatic activity of the PRC2 complex. We provide structural evidence for this interaction by nuclear magnetic resonance spectroscopy (NMR). Using genome-wide chromatin binding analyses and expression analyses, we show that Phf19 binds to a subset of PRC2 targets in embryonic stem (ES) cells, and that this is required for their repression and for H3K27me3 deposition. These findings reveal that the H3K36me2/3-Phf19 interaction is essential for PRC2 complex activity and for proper regulation of gene repression in ES cells. We determined the genome binding/occupancy profile of Phf19, H3K36me3, H3K36me2, H3K27me3 and Suz12 by high throughput sequencing in mouse embryonic stem cells. For Phf19 two independent biological replicas were performed and Phf19 binding sites were defined as those sites (ChIP-seq peaks) present in both replicas. H3K27me3 was evaluated in control ES cells and cells depleted of Phf19 (shRd and shPhf19 respectively).
Project description:Polycomb group proteins are transcriptional repressors that play essential roles in regulating genes required for differentiation and embryonic development. The Polycomb repressive complex 2 (PRC2) contains the methyltransferase activity for lysine 27 on histone 3 (H3K27me3), which is a docking site for the PRC1 complex and leads to gene repression. However, the role of other histone modifications in regulating PRC2 activity is just beginning to be understood. Here we show that direct recognition of histone H3 methylated at lysine 36 (H3K36me), an mark associated with activation, by the PRC2 subunit Phf19 is required for the full enzymatic activity of the PRC2 complex. We provide structural evidence for this interaction by nuclear magnetic resonance spectroscopy (NMR). Using genome-wide chromatin binding analyses and expression analyses, we show that Phf19 binds to a subset of PRC2 targets in embryonic stem (ES) cells, and that this is required for their repression and for H3K27me3 deposition. These findings reveal that the H3K36me2/3-Phf19 interaction is essential for PRC2 complex activity and for proper regulation of gene repression in ES cells.
Project description:This SuperSeries is composed of the following subset Series: GSE29146: NSD2 links dimethylation of histone H3 at lysine 36 to oncogenic programming [ChIP] GSE29147: NSD2 links dimethylation of histone H3 at lysine 36 to oncogenic programming [RNAi] GSE29148: NSD2 links dimethylation of histone H3 at lysine 36 to oncogenic programming [TKO] GSE29150: NSD2 links dimethylation of histone H3 at lysine 36 to oncogenic programming [Transduction] Refer to individual Series
Project description:Dysregulation of Polycomb Repressive Complex 2 (PRC2) promotes oncogenesis partly through its enzymatic function for inducing tri-methylation of histone H3 lysine 27 (H3K27me3). However, it remains to be determined how PRC2 activity is regulated in normal and diseased settings. We here report a PRC2-associated cofactor, PHD finger protein 19 (PHF19, also known as Polycomb-like 3), as a crucial mediator of tumorigenicity in multiple myeloma (MM). Overexpression and/or genomic amplification of PHF19 is found associated with malignant progression of MM and plasma cell leukemia, correlating to worse treatment outcomes. Using various MM models, we demonstrated a critical requirement of PHF19 for tumor growth in vitro and in vivo. Mechanistically, PHF19-mediated oncogenic effect relies on its PRC2-interacting and chromatin-binding functions. ChIP-Seq profiling showed a critical role for PHF19 in maintaining the H3K27me3 landscape. PHF19 depletion led to loss of broad H3K27me3 domains possibly due to impaired H3K27me3 spreading from CpG islands, which is reminiscent to the reported effect of an ‘onco’-histone mutation, H3K27-to-methionine (H3K27M). RNA-Seq-based transcriptome profiling in MM lines also demonstrated a requirement of PHF19 for optimal silencing of PRC2 targets, which include cell cycle inhibitors and interferon-JAK-STAT signaling genes critically involved in tumor suppression.
2019-08-31 | GSE136410 | GEO
Project description:NSD2 links dimethylation of histone H3 at lysine 36 to oncogenic programming