Project description:Information on anaerobic phenol metabolism by physiological groups of bacteria other than nitrate reducers is scarce. We investigated phenol degradation in the strictly anaerobic iron-reducing deltaproteobacterium Geobacter metallireducens GS-15 using metabolite, transcriptome, proteome, and enzyme analyses. The results showed that the initial steps of phenol degradation are accomplished by phenylphosphate synthase (encoded by pps genes) and phenylphosphate carboxylase (encoded by ppc genes) as known from Thauera aromatica, but they also revealed some distinct differences. The pps-ppc gene cluster identified in the genome is functional, as shown by transcription analysis. In contrast to T. aromatica, transcription of the pps- and ppc-like genes was induced not only during growth on phenol, but also during growth on benzoate. In contrast, proteins were detected only during growth on phenol, suggesting the existence of a posttranscriptional regulation mechanism for these initial steps. Phenylphosphate synthase and phenylphosphate carboxylase activities were detected in cell extracts. The carboxylase does not catalyze an isotope exchange reaction between (14)CO(2) and 4-hydroxybenzoate, which is characteristic of the T. aromatica enzyme. Whereas the enzyme of T. aromatica is encoded by ppcABCD, the pps-ppc gene cluster of G. metallireducens contains only a ppcB homologue. Nearby, but oriented in the opposite direction, is a ppcD homologue that is transcribed during growth on phenol. Genome analysis did not reveal obvious homologues of ppcA and ppcC, leaving open the question of whether these genes are dispensable for phenylphosphate carboxylase activity in G. metallireducens or are quite different from the Thauera counterparts and located elsewhere in the genome.
Project description:The crystal structure of a putative HNH endonuclease, Gmet_0936 protein from Geobacter metallireducens GS-15, has been determined at 2.6 Å resolution using single-wavelength anomalous dispersion method. The structure contains a two-stranded anti-parallel β-sheet that are surrounded by two helices on each face, and reveals a Zn ion bound in each monomer, coordinated by residues Cys38, Cys41, Cys73, and Cys76, which likely plays an important structural role in stabilizing the overall conformation. Structural homologs of Gmet_0936 include Hpy99I endonuclease, phage T4 endonuclease VII, and other HNH endonucleases, with these enzymes sharing 15-20% amino acid sequence identity. An overlay of Gmet_0936 and Hpy99I structures shows that most of the secondary structure elements, catalytic residues as well as the zinc binding site (zinc ribbon) are conserved. However, Gmet_0936 lacks the N-terminal domain of Hpy99I, which mediates DNA binding as well as dimerization. Purified Gmet_0936 forms dimers in solution and a dimer of the protein is observed in the crystal, but with a different mode of dimerization as compared to Hpy99I. Gmet_0936 and its N77H variant show a weak DNA binding activity in a DNA mobility shift assay and a weak Mn²⁺-dependent nicking activity on supercoiled plasmids in low pH buffers. The preferred substrate appears to be acid and heat-treated DNA with AP sites, suggesting Gmet_0936 may be a DNA repair enzyme.
Project description:Geobacter species are of great interest for environmental and biotechnology applications as they can carry out direct electron transfer to insoluble metals or other microorganisms and have the ability to assimilate inorganic carbon. Here, we report on the capability and key enabling metabolic machinery of Geobacter metallireducens GS-15 to carry out CO2 fixation and direct electron transfer to iron. An updated metabolic reconstruction was generated, growth screens on targeted conditions of interest were performed, and constraint-based analysis was utilized to characterize and evaluate critical pathways and reactions in G. metallireducens. The novel capability of G. metallireducens to grow autotrophically with formate and Fe(III) was predicted and subsequently validated in vivo. Additionally, the energetic cost of transferring electrons to an external electron acceptor was determined through analysis of growth experiments carried out using three different electron acceptors (Fe(III), nitrate, and fumarate) by systematically isolating and examining different parts of the electron transport chain. The updated reconstruction will serve as a knowledgebase for understanding and engineering Geobacter and similar species.