Project description:Desulfotomaculum reducens is the first Gram-positive sulfate- and metal- reducing bacterium for which the transcriptomic response to uranium exposure has been evaluated. The genes upregulated during fermentative growth in the presence of U(VI) as compared to its absence included those encoding for proteins involved in respiration such as NADH quinone oxidoreductase and heterodisulfide reductase. This finding suggested that electrons were shuttled to the electron transport chain during fermentation which points to the reduction of U(VI) as a metabolic process. While U(IV) is typically insoluble and readily removable by filtration, U(IV) produced during active growth was not retained by a 0.2 µm pore size filter and filtration was not sufficient to differentiate between U(VI) and U(IV). In addition, genes involved in iron homeostasis were upregulated in the presence of uranium, which was consistent with the upregulation of genes involved in c-type cytochrome biogenesis. Despite the upregulation of cytochrome biosynthesis genes, the sole c-type cytochrome encoded in the genome was not differentially expressed. Finally, genes encoding metal efflux pumps were also upregulated indicating the toxic nature of uranium. Analysis of the time-dependent gene expression showed that sporulation was the dominant process at the early stationary phase and that the presence of U at that stage did not impact expression. This data set is a time course comparing sulfate and uranium reduction with fermentative growth.
Project description:Geobacteraceae transfer electrons from a donor such as acetate to an electron acceptor such as Fe(III) or U(VI). Geobacter uraniireducens is found in uranium-contaminated sites and plays an important role in in situ bioremediation. In this experiment, gene expression was compared between G. uraniireducens cultures grown in sediments from a uranium contaminated site amended with acetate and cultures grown in acetate/fumarate medium. Keywords: two-condition comparison