Project description:Coxiella burnetii, the agent of Q fever, persists in humans despite specific immune responses: however, its reservoir remains unknown. We detected C. burnetii in adipose tissue from BALB/c and C57/BL6 mice 4 months after infection when no bacteria were found in other tissues. C. burnetii infected cultivated adipocytes, replicated within late phagosomes and induced a transcriptional program that was enriched for the expression of genes associated with inflammatory response, hormonal responses and cytoskeleton.
Project description:The inability to propagate obligate intracellular pathogens under axenic (host cell-free) culture conditions imposes severe experimental constraints that have negatively impacted progress in understanding pathogen virulence and disease mechanisms. Coxiella burnetii, the causative agent of human Q (Query) fever, is an obligate intracellular bacterial pathogen that replicates exclusively in an acidified, lysosome-like vacuole. To define conditions that support C. burnetii growth, we systematically evaluated the organism’s metabolic requirements using expression microarrays, genomic reconstruction, and metabolite typing. This led to development of a complex nutrient medium that supported substantial growth (~ 3 log10) of C. burnetii in a 2.5% oxygen environment. Importantly, axenically grown C. burnetii were highly infectious for Vero cells and exhibited developmental forms characteristic of in vivo grown organisms. Axenic cultivation of C. burnetii will facilitate studies of the organism’s pathogenesis and genetics, and aid development of Q fever preventatives such as an effective subunit vaccine. Furthermore, the systematic approach used here may be broadly applicable to development of axenic media that support growth of other medically important obligate intracellular pathogens.
Project description:Mast cells (MCs) are critical mediators of inflammation; however, their microbicidal activity against invading pathogens remains largely unknown. Here, we describe a nonpreviously reported antibacterial mechanism used by MCs against Coxiella burnetii, the agent of Q fever. We show that C. burnetii interaction with MCs does not result in bacterial uptake but rather induces the formation of extracellular actin filaments named cytonemes. MC cytonemes express cathelicidin and neutrophil elastase and mediate the capture and destruction of entrapped bacteria. We provide evidence that MC cytoneme formation and microbicidal activity are dependent on the cooperation of the scavenger receptor CD36 and Toll-like receptor 4. Taken together, our results suggest that MCs use an extracellular sophisticated mechanism of defense to eliminate intracellular pathogens, such as C. burnetii, before their entry into host cells.
Project description:Coxiella burnetii, the agent of Q fever, persists in humans despite specific immune responses: however, its reservoir remains unknown. We detected C. burnetii in adipose tissue from BALB/c and C57/BL6 mice 4 months after infection when no bacteria were found in other tissues. C. burnetii infected cultivated adipocytes, replicated within late phagosomes and induced a transcriptional program that was enriched for the expression of genes associated with inflammatory response, hormonal responses and cytoskeleton. 3T3-L1 (ATCC) differentiated adipocytes were stimulated or not with Coxiella burnetii (NMI) at a ratio of 50 bacteria per cell. Four biological replicates were analyzed in each group. Due to technical reason, one unstimulated sample was discarded from the analysis.
Project description:The inability to propagate obligate intracellular pathogens under axenic (host cell-free) culture conditions imposes severe experimental constraints that have negatively impacted progress in understanding pathogen virulence and disease mechanisms. Coxiella burnetii, the causative agent of human Q (Query) fever, is an obligate intracellular bacterial pathogen that replicates exclusively in an acidified, lysosome-like vacuole. To define conditions that support C. burnetii growth, we systematically evaluated the organismâ??s metabolic requirements using expression microarrays, genomic reconstruction, and metabolite typing. This led to development of a complex nutrient medium that supported substantial growth (~ 3 log10) of C. burnetii in a 2.5% oxygen environment. Importantly, axenically grown C. burnetii were highly infectious for Vero cells and exhibited developmental forms characteristic of in vivo grown organisms. Axenic cultivation of C. burnetii will facilitate studies of the organismâ??s pathogenesis and genetics, and aid development of Q fever preventatives such as an effective subunit vaccine. Furthermore, the systematic approach used here may be broadly applicable to development of axenic media that support growth of other medically important obligate intracellular pathogens. Host cell-free growth, Vero cell growth and carryover baseline of Coxiella burnetii
Project description:BackgroundQ fever, caused by Coxiella burnetii, is a zoonosis that presents a worldwide distribution and affects both humans and animals. The route of dispersal of the pathogen by ruminants into the environment usually involves stages of abortion and parturition, nevertheless the agent can, also, be detected in other animal samples. Therefore it is considered as important in terms of proper diagnosis, as well as, for epidemiology and surveillance purposes, to genotype the pathogen. The aim of the current study was to investigate the presence of different genotypes of the agent in animals that had suffered from abortion during a two-year survey in Greece.ResultsSixty nine tissue samples (37 stomach contents, 11 liver samples, 21 cotyledons) were collected from 59 abortion cases in sheep (N = 45) and goats (N = 14) from 65 farms at eight different areas of Greece. Samples were screened by qPCR and positive ones were further genotyped using a 10-locus multiple loci (ms 1, 3, 7, 12, 20, 21, 22, 26, 30 and 36) variable number of tandem repeat analysis (MLVA) method. Three genotypes were identified in sheep (A, B, C). Samples representing each of the obtained MLVA profile were further used for MST genotyping. Ten spacers (Cox 2, 5, 6, 18, 20, 22, 37, 51, 56 and 57) were amplified. A close relatedness among the identified MLVA genotypes was confirmed since they all belonged to MST group 32.ConclusionsThe current study introduces into the aspect of genotyping of C. burnetii in Greece. Further studies are needed to explore the presence of more genotypes, to associate the genotypes circulating in the animal and tick population with those causing human disease in order to further expand on the epidemiological aspects of the pathogen.