Project description:Chemical analysis of the compounds present in sediment, although informative, often is not indicative of the downstream biological effects that these contaminants exert on resident aquatic organisms. More direct molecular methods are needed to determine if marine life is affected by exposure to sediments. In this study, we used an aquatic multispecies microarray and q-PCR to investigate the effects on gene expression in juvenile sea bream (Sparus aurata) of two contaminated sediments defined as sediment 1 and 2 respectively, from marine areas in Northern Italy.
Project description:In the present study, we were interested in gene expression changes in the pectoralis muscle of juvenile king penguins during the transition from terrestrial to marine life. Strictly terrestrial during their first year after hatching, king penguin chicks must then depart to sea to reach nutritional emancipation and pectoralis muscle is largely involved in penguin adaptation to the marine environment. To compare these transcriptomic profiles, we realized heterologous hybridization on Affymetrix GeneChip Chicken Genome Arrays, as the chicken is the closest model species for which microarrays are available. The development of a new algorithm, MaxRS, allow us to determine differentially expressed genes implicated in energetic metabolism or involved in cellular defense against reactive oxygen species and associated injuries. We compared muscle sample biopsy from 4 penguin juveniles captured just before they undergone their first immersion to cold water (named NI for Never Immersed) and 3 penguin juveniles that had completly accomplished their acclimation to marine life (named SA for Sea Acclimated).