Project description:An Autonomous Underwater Vehicle (AUV) and large volume underwater pumps were used to collect microbial biomass from offshore waters of the Sargasso Sea, from surface waters and into the deep ocean. Seawater collection was performed along a transect in the western North Atlantic Ocean beginning near Bermuda and ending off the coast of Massachusetts, capturing metabolic signatures from oligotrophic, continental margin, and productive coastal ecosystems.
Project description:Marine snow plays a central role in carbon cycling. It consists of organic particles and particle-associated (PA) microbMarine snow plays a central role in carbon cycling. It consists of organic particles and particle-associated (PA) microbial communities that are embedded in a sugary matrix. Metaproteomic analysis offers the unique opportunity to gain unprecedented insight into the microbial community composition and biomolecular activity of environmental samples. In order to realize this potential for marine PA microbial communities, new methods of protein extraction must be developed. In this study, we used 1D-SDS-PAGEs and LC-MS/MS to compare the efficiency of six established protein extraction protocols for their applicability of metaproteomic analyses of the PA microbial community in the North Sea. A combination of SDS-buffer extraction and bead beating resulted in the greatest number of identified protein groups. As expected, a metagenomic database of the same environmental sample increased the number of protein identification by approximately 50%. To demonstrate the application of our established protocol, particulate bacterioplankton samples collected during spring phytoplankton bloom in 2009 near the island Helgoland, were analysed by a GeLC-MS/MS-based metaproteomic approach. Our results indicated that there are only slight differences in the taxonomical distribution between free-living (FL) and PA bacteria but that the abundance of protein groups involved in polysaccharide degradation, motility and particle specific stress (oxygen limitation, nutrient limitation, heavy metal stress) is higher in the PA fractions. ial communities that are embedded in a sugary matrix. Metaproteomic analysis offers the unique opportunity to gain unprecedented insight into the microbial community composition and biomolecular activity of environmental samples. In order to realize this potential for marine PA microbial communities, new methods of protein extraction must be developed. In this study, we used 1D-SDS-PAGEs and LC-MS/MS to compare the efficiency of six established protein extraction protocols for the their applicability of metaproteomic analyses of the PA microbial community in the North Sea. A combination of SDS-buffer extraction and bead beating resulted in the greatest number of identified protein groups. As expected, a metagenomic database of the same environmental sample increased the number of protein identification by approximately 50%. To demonstrate the application of our established protocol, particulate bacterioplankton samples collected during spring phytoplankton bloom in 2009 near the island Helgoland, were analysed by a GeLC-MS/MS-based metaproteomic approach. Our results indicated that there are only slight differences in the taxonomical distribution between free-living (FL) and PA bacteria but that the abundance of protein groups involved in polysaccharide degradation, motility and particle specific stress (oxygen limitation, nutrient limitation, heavy metal stress) is higher in the PA fractions.
Project description:Metagenomic approaches have revealed unprecedented genetic diversity within microbial communities across vast expanses of the world’s oceans. Linking this genetic diversity with key metabolic and cellular activities of microbial assemblages is a fundamental challenge. Here we report on a collaborative effort to design MicroTOOLs (Microbiological Targets for Ocean Observing Laboratories), a high-density oligonucleotide microarray that targets functional genes of diverse taxa in pelagic and coastal marine microbial communities. MicroTOOLs integrates nucleotide sequence information from disparate data types: genomes, PCR-amplicons, metagenomes, and metatranscriptomes. It targets 19 400 unique sequences over 145 different genes that are relevant to stress responses and microbial metabolism across the three domains of life and viruses. MicroTOOLs was used in a proof-of-concept experiment that compared the functional responses of microbial communities following Fe and P enrichments of surface water samples from the North Pacific Subtropical Gyre. We detected transcription of 68% of the gene targets across major taxonomic groups, and the pattern of transcription indicated relief from Fe limitation and transition to N limitation in some taxa. Prochlorococcus (eHLI), Synechococcus (sub-cluster 5.3) and Alphaproteobacteria SAR11 clade (HIMB59) showed the strongest responses to the Fe enrichment. In addition, members of uncharacterized lineages also responded. The MicroTOOLs microarray provides a robust tool for comprehensive characterization of major functional groups of microbes in the open ocean, and the design can be easily amended for specific environments and research questions.
Project description:Microbial communities respond to temperature with physiological adaptation and compositional turnover. Whether thermal selection of enzymes explains marine microbiome plasticity in response to temperature remains unresolved. By quantifying the thermal behaviour of seven functionally-independent enzyme classes (esterase, extradiol dioxygenase, phosphatase, beta-galactosidase, nuclease, transaminase, and aldo-keto reductase) in native proteomes of marine sediment microbiomes from the Irish Sea to the southern Red Sea, we record a significant effect of the mean annual temperature (MAT) on enzyme’s response (R2, 0.51–0.80, p < 0.01 in all cases). Activity and stability profiles of 228 esterases and 5 extradiol dioxygenases from sediment and seawater across 70 locations worldwide (latitude 62.2°S–16°N, MAT –1.4ºC–29.5ºC) validate this thermal pattern. Modelling the esterase phase transition temperature as a measure of structural flexibility, confirm the observed relationship with MAT. Furthermore, when considering temperature variability in sites with non-significantly different MATs, the broadest range of enzyme thermal behaviour and the highest growth plasticity of the enriched heterotrophic bacteria occur in samples with the widest annual thermal variability. These results indicate that temperature-driven enzyme selection shapes microbiome thermal plasticity and that thermal variability finely tunes such processes and should be considered alongside MAT in forecasting microbial community thermal response
Project description:we applied metaproteomic approach to capture proteins from three size-fractionated microbial communities at the DCM in the basin of the South China Sea. The deep recovery of proteomes from a marine DCM plankton assemblage provides the highest resolution of metabolic activities as well as microbial niche differentiation, revealing a spectrum of biological processes carrying out by microbes at DCM of the SCS.
Project description:In the present study, we were interested in gene expression changes in the pectoralis muscle of juvenile king penguins during the transition from terrestrial to marine life. Strictly terrestrial during their first year after hatching, king penguin chicks must then depart to sea to reach nutritional emancipation and pectoralis muscle is largely involved in penguin adaptation to the marine environment. To compare these transcriptomic profiles, we realized heterologous hybridization on Affymetrix GeneChip Chicken Genome Arrays, as the chicken is the closest model species for which microarrays are available. The development of a new algorithm, MaxRS, allow us to determine differentially expressed genes implicated in energetic metabolism or involved in cellular defense against reactive oxygen species and associated injuries. We compared muscle sample biopsy from 4 penguin juveniles captured just before they undergone their first immersion to cold water (named NI for Never Immersed) and 3 penguin juveniles that had completly accomplished their acclimation to marine life (named SA for Sea Acclimated).
Project description:Microarrays are useful tools for detecting and quantifying specific functional and phylogenetic genes in natural microbial communities. In order to track uncultivated microbial genotypes and their close relatives in an environmental context, we designed and implemented a “genome proxy” microarray that targets microbial genome fragments recovered directly from the environment. Fragments consisted of sequenced clones from large-insert genomic libraries from microbial communities in Monterey Bay, the Hawaii Ocean Time-series station ALOHA, and Antarctic coastal waters. In a prototype array, we designed probe sets to thirteen of the sequenced genome fragments and to genomic regions of the cultivated cyanobacterium Prochlorococcus MED4. Each probe set consisted of multiple 70-mers, each targeting an individual ORF, and distributed along each ~40-160kbp contiguous genomic region. The targeted organisms or clones, and close relatives, were hybridized to the array both as pure DNA mixtures and as additions of cells to a background of coastal seawater. This prototype array correctly identified the presence or absence of the target organisms and their relatives in laboratory mixes, with negligible cross-hybridization to organisms having ≤~75% genomic identity. In addition, the array correctly identified target cells added to a background of environmental DNA, with a limit of detection of ~0.1% of the community, corresponding to ~10^3 cells/ml in these samples. Signal correlated to cell concentration with an R2 of 1.0 across six orders of magnitude. In addition the array could track a related strain (at 86% genomic identity to that targeted) with a linearity of R2=0.9999 and a limit of detection of ~1% of the community. Closely related genotypes were distinguishable by differing hybridization patterns across each probe set. This array’s multiple-probe, “genome-proxy” approach and consequent ability to track both target genotypes and their close relatives is important for the array’s environmental application given the recent discoveries of considerable intra-population diversity within marine microbial communities. Keywords: target addition experiment, proof-of-concept for GPL6012