Project description:Transcriptional profiling of Mycobacterium tuberculosis H37Rv strains comparing control DMSO treated strains with Linezolid treated strains. Goal was to determine the effects of Linezolid against Mycobacterium tuberculosis H37Rv strains.
Project description:Transcriptional profiling of Mycobacterium tuberculosis H37Rv strains comparing control DMSO treated strains with Lupulone treated strains. Goal was to determine the effects of Lupulone against Mycobacterium tuberculosis H37Rv strains.
Project description:Transcriptional profiling of Mycobacterium tuberculosis H37Rv strains comparing control DMSO treated strains with Lupulone treated strains. Goal was to determine the effects of Lupulone against Mycobacterium tuberculosis H37Rv strains. Two-condition experiment,control DMSO treated strains vs. Lupulone treated strains. Biological replicates: 2 control replicates, 2 Lupulone replicates.
Project description:Transcriptional profiling of Mycobacterium tuberculosis H37Rv strains comparing control DMSO treated strains with Linezolid treated strains. Goal was to determine the effects of Linezolid against Mycobacterium tuberculosis H37Rv strains. Two-condition experiment,control DMSO treated strains vs. Linezolid treated strains. Biological replicates: 2 control replicates, 2 Linezolid replicates.
Project description:Investigation of whole genome gene expression level changes in Mycobacterium tuberculosis treated with the DHFR inhibitor WR99210, compared to untreated cells. The antimycobacterial properties of WR99210 are further described in Gerum, A., Ulmer, J., Jacobus, D., Jensen, N., Sherman, D., and C. Sibley. 2002. Novel Saccharomyces cerevisiae screen identifies WR99210 analogues that inhibit Mycobacterium tuberculosis dihydrofolate reductase. Antimicrob Agents Chemother 46(11):3362-3369 [PMID:12384337]
Project description:The emergence of drug resistance among tuberculosis (TB) patients is often associated with their non-compliance to the length of the chemotherapy, which can reach up to 2 years for the treatment of multi-drug-resistant (MDR) TB. Drugs that would kill TB faster and would not lead to the development of drug resistance could shorten chemotherapy significantly. In Escherichia coli, the common mechanism of cell death by bactericidal antibiotics is the generation of highly reactive hydroxyl radicals via the Fenton reaction. Since ascorbic acid (vitamin C) is known to drive the Fenton reaction, we tested whether the Fenton reaction could lead to a bactericidal event in Mycobacterium tuberculosis by treating M. tuberculosis cultures with vitamin C. Here, we report that the addition of vitamin C to drug-susceptible, MDR and extensively drug-resistant (XDR) M. tuberculosis strains results in sterilization of the cultures in vitro. We show that the sterilizing effect of vitamin C on M. tuberculosis was dependent on the production of high ferrous ion levels and reactive oxygen species. Although, this potent sterilizing activity of vitamin C against M. tuberculosis in vitro was not observed in mice, we believe this activity needs further investigation. Comparison of vitamin C treated Mycobacterium tuberculosis transcriptome relative to untreated; Three biological replicates, second is a dye flip