Project description:Purpose: Core 3 derived glycans, a major type of O-glycan expressed by normal epithelial cells of the gastrointestinal tract, are downregulated during malignancy, because of loss of expression of functional β3-N-acetylglucosaminyltransferase-6 (core 3 synthase). We investigated the expression of core 3 synthase in normal pancreas and pancreatic cancer and evaluated the biological effects of re-expressing core 3 synthase in pancreatic cancer cells that had lost expression. Experimental Design: We determined that pancreatic tumors and tumor cell lines have lost expression of core 3 synthase. We therefore re-expressed in human pancreatic cancer cells (Capan-2 and FG) to investigate the contribution of core 3 glycans to malignant progression. Results: Pancreatic cancer cells expressing core 3 synthase showed reduced in vitro cell proliferation, migration and invasion compared with vector control cells. Expression of core 3 O-glycans induced altered expression of β1 integrin, decreased activation of focal adhesion kinase, led to the down regulation of expression of several genes including REG1α and FGFR3, and altered lamellipodia formation. The addition of a GlcNAc residue by core 3 synthase leads to the extension of the tumor associated Tn structure on MUC1. Orthotopic injection of FG cells expressing core 3 synthase into the pancreas of nude mice produced significantly smaller tumors and decreased metastasis to the surrounding tissues compared to vector control FG cells. Conclusions: These findings indicate that expression of core 3 derived O-glycans in pancreatic cancer cells suppresses tumor growth and metastasis through modulation of glycosylation of mucins and other cell surface and extracellular matrix proteins. Two-condition experiment, Core 3 synthase stable expression (C3) vs. vector control (PLVX) cells. Biological replicates: 3 Core 3 synthase stable expression, 3 vector control, independently grown and harvested. One replicate per array.
Project description:Purpose: Core 3 derived glycans, a major type of O-glycan expressed by normal epithelial cells of the gastrointestinal tract, are downregulated during malignancy, because of loss of expression of functional β3-N-acetylglucosaminyltransferase-6 (core 3 synthase). We investigated the expression of core 3 synthase in normal pancreas and pancreatic cancer and evaluated the biological effects of re-expressing core 3 synthase in pancreatic cancer cells that had lost expression. Experimental Design: We determined that pancreatic tumors and tumor cell lines have lost expression of core 3 synthase. We therefore re-expressed in human pancreatic cancer cells (Capan-2 and FG) to investigate the contribution of core 3 glycans to malignant progression. Results: Pancreatic cancer cells expressing core 3 synthase showed reduced in vitro cell proliferation, migration and invasion compared with vector control cells. Expression of core 3 O-glycans induced altered expression of β1 integrin, decreased activation of focal adhesion kinase, led to the down regulation of expression of several genes including REG1α and FGFR3, and altered lamellipodia formation. The addition of a GlcNAc residue by core 3 synthase leads to the extension of the tumor associated Tn structure on MUC1. Orthotopic injection of FG cells expressing core 3 synthase into the pancreas of nude mice produced significantly smaller tumors and decreased metastasis to the surrounding tissues compared to vector control FG cells. Conclusions: These findings indicate that expression of core 3 derived O-glycans in pancreatic cancer cells suppresses tumor growth and metastasis through modulation of glycosylation of mucins and other cell surface and extracellular matrix proteins.
Project description:We and others have shown that AGR2 is frequently upregulated during the development of pancreatic cancer. We used microarray to look at the target genes regulated by AGR2 in pancreatic cancer cell lines FA6 and MiaPaCa2. Keywords: gene knock-down, overexpression We transiently down-regulated AGR2 expression in FA6 pancreatic cancer cells using INTERFERin transfection reagent and either AGR2 siRNA or non-targeting control siRNA for 48 hours. RNA was extracted and hybridized on Affymetrix microarrays. We looked for new target genes regulated by AGR2. We generated stable cell lines by introducing control vector pCEP4 or AGR2 overexpressing vector pCEP4-AGR2 into the pancreatic cancer cell line MiaPaCa2, single cell clones were then isolated. RNA was extracted and hybridized on Affymetrix microarrays.We looked for new target genes regulated by AGR2.
Project description:We and others have shown that S100P is highly upregulated during the progression of pancreatic cancer. We used microarrays to look at the target genes regulated by S100P in the pancreatic cancer cell line Panc1. Keywords: Gene overexpression We generated stable cell lines by introducing control vector pcDNA3.1/V5-His or S100P-overexpressing vector pcDNA3.1/S100P-V5-His into the pancreatic cancer cell line Panc1, single cell clones were then isolated. RNA was extracted and hybridized on Affymetrix microarrays. We looked for new target genes regulated by S100P.
Project description:The objective of this study is to identify metastatic candidates via initial screening by gene expression profiling between subcloned cell lines of low (C5 and FG) and high (C5LM2 and L3.6) metastatic potential from their parental primary human pancreatic adenocarcinoma cell lines (Panc1 and COLO357). Agilent arrays were utilized for this experiment and there are 3 replicates for each cell line. Two-condition experiment, C5 vs. C5LM2 cell lysates with 3 replicates per cell line and FG vs. L3.6 cell lysates.
Project description:To investigate the effect of STAT3 activation on the expression of gastric cancer cells, expression profile was compared in MKN28 cells overexpressed with control vector vs mouse constitutively activated STAT3 mutant (STAT3c). MKN28 gastric cancer cells were transfected with pcDNA3.1 (vector control) or plasmid overexpressing STAT3c (treatment). Stable clones were selected for RNA extraction and expression microarray analysis (Agilent). Experiments were repeated twice.
Project description:We have run shotgun and PRM proteomic analysis of cellular proteome and secretome from pancreatic cancer cell lines (PANC-1, PaCa-44, MIA PaCa-2 and BxPC-3) vs. normal epithelial ductal pancreatic cells (HPDE) in LC-MS/MS. Stable isotopic labelling was performed and digestion was done with Trypsin/Lys-C mix endoproteinase.
Project description:Transcriptome analysis of EYA2 non-expressing pancreatic cancer cell lines with stable transfectant overexpressing EYA2 We analyzed Panc2.5 and Panc3.014 stable transfectant (overexpressing EYA2) and control (empty pcDNA6.2/cLumio-DEST vector) cell transcriptomes using the Affymetrix Exon Array ST1.0 platform. Statistical analysis of gene expression array data was completed with Partek Genomic Suite 6.4 software.