Project description:Transcriptional expression of a restricted set of cancer signal transduction-related gesen were comparatively quantified in HER2/neu transgenic mammary tumors, mesenchymal and epithelial tumor cell lineages, both estabilished from HER-2/neu transgenic tumors, and syngeneic mesenchymal stem cells.
Project description:To identify genes that may facilitate early steps of ErbB2/Neu-mediated mammary tumorigenesis, we performed comparative microarray analysis of 5- and 10-week bitransgenic mammary glands (LHxMMTV-neu) in triplicate. Keywords: transgenic mouse, erbB2, MMTV-neu, HER2, mammary tumor, breast cancer
Project description:Murine models of mammary cancers have proven to be highly informative on numerous fronts including individual gene causation, microenvironmental analyses, and chemoprevention studies. The MMTV-Neu transgenic model of mammary cancer has proven to be a useful model and has been employed in several prevention studies. However, there are certain practical drawbacks to its use including long tumor latencies and a tendency to develop mutations in the transmembrane domain of Neu (unlike human HER2/Neu overexpressing breast cancers). Here we report modifications that were made in an attempt to optimize this mouse model for chemopreventive screening. First, homozygous MMTV-Neu and homozygous P53 KO mice were crossed to create a MMTV-Neu/P53+/- strain (which more closely approximates the genetic make-up of most HER2+ human patients). Second, to overcome the drawback of long tumor latencies, the mice were treated with DMBA for eight weeks. DMBA treatment greatly decreased the latency of mammary carcinomas in the MMTV-Neu mice although the resulting tumors remained histopathologically similar to those from MMTV-Neu control mice. Next, we examined gene expression in tumors derived from MMTV-Neu, MMTV-Neu/p53+/-, and DMBA treated mice. It was found that the characteristic MMTV-Neu tumor-defined expression pattern was still the most prevalent feature of all the MMTV-Neu tumors despite their being crossed to the p53 null allele, treated with DMBA, or both. However, tumors from the DMBA treated animals exhibited many unique gene expression changes including the high expression of stress response, defense, and inflammation genes. Finally, we demonstrated that the RXR agonists UAB30 and Targretin, both inhibited mammary cancer formation in MMTV-Neu mice, including those treated with DMBA. These results demonstrate the potential utility of this murine model for additional chemoprevention studies.
Project description:HER2 / Neu is amplified and overexpressed in a large proportion of human breast cancers, but the signaling pathways that contribute to tumor development and metastatic progression are not completely understood. Using gene expression data and pathway signatures we predicted a role for activator E2F transcription factors in Neu induced tumors. This was genetically tested by interbreeding Neu transgenics with knockouts of the three activator E2Fs. Loss of any E2F delayed Neu induced tumor onset. E2F1 loss accelerated tumor growth while E2F2 and E2F3 loss did not. Strikingly, it was observed that loss of E2F1 or E2F2 significantly reduced the metastatic capacity of the tumor and this was associated with a reduction in circulating tumor cells in the E2F2 knockout. Gene expression analysis between the tumors in the various E2F mutant backgrounds revealed that there was extensive compensation by other E2F family members in the individual knockouts, underscoring the importance of the E2Fs in HER2 / Neu induced tumors. Extension to HER2 positive human breast cancer revealed a number of HER2+ subtypes based on E2F activity with differences in relapse free survival times. Taken together these data demonstrate that the E2F transcription factors are integral to HER2+ tumor development and progression.
Project description:Transcriptional expression of a restricted set of cancer signal transduction-related gesen were comparatively quantified in HER2/neu transgenic mammary tumors, mesenchymal and epithelial tumor cell lineages, both estabilished from HER-2/neu transgenic tumors, and syngeneic mesenchymal stem cells. In the study presented here, HER-2/neu transgenic mouse mammary tumors, previously described (Galie et al Carcinogenesis 2005 26(11):1868) mesenchymal (A17) and epithelial (BB1) cell lineages estabilished from murine HER-2/neu transgenic mammary tumors, and syngeneic mesenchymal stem cells, underwent transcriptional analysis using microarrays containing probes for 112 signal transduction-related genes and controls (GEArray Q Series Mouse Signal Transduction in Cancer Gene Array, MM-044, Superarray, Friederick, MD, USA).
Project description:Cancer is considered as a disease of a specific organ, but its effects are felt throughout the body. The systemic effects of cancer can lead to weakness in muscles and heart, which hastens cancer-associated death. miR-486 is a myogenic microRNA and its reduced expression in skeletal muscle is observed in muscular dystrophy. Muscle-specific transgenic expression of miR-486 using muscle creatine kinase promoter (MCK-miR-486) partially rescues skeletal muscle defects in muscular dystrophy animal models. We had previously demonstrated reduced circulating and skeletal muscle levels of miR-486 in several cancer types and lower miR-486 levels correlated with skeletal muscle defects and functional limitations in mammary tumor models. Therefore, skeletal muscle defects induced by cancer could resemble defects observed in various dystrophies, which could be reversed through skeletal muscle expression of miR-486. We performed functional limitations studies and biochemical analysis of skeletal muscles of MMTV-Neu transgenic mice that mimic HER2+ breast cancer and MMTV-PyMT transgenic mice that mimic luminal subtype B breast cancer and these mice crossed to MCK-miR-486 transgenic mice. miR-486 significantly prevented tumor-induced reduction in muscle contraction force, grip strength, and rotarod performance in MMTV-Neu, but not in MMTV-PyMT mice. In MMTV-Neu model, miR-486 reversed several of the cancer-induced changes in skeletal muscle including loss of p53, phospho-AKT, and phospho-laminin alpha 2 (LAMA2) and gain of phosphorylation of the pre-mRNA processing factor hnRNPA0 and the splicing factor SRSF10. LAMA2 is a part of the dystrophin-associated glycoprotein complex, and its loss-of-function mutation is associated with congenital muscular dystrophy. Thus, similar to muscular dystrophy, miR-486 has the potential to reverse skeletal muscle defects and cancer burden in select cancer types.