Project description:At the onset of ripening (veraison), Vitis vinifera L. cv Muscat Hamburg fruiting cuttings were exposed to four different environmental regimes in two growth chambers set up: 20/15ºC (day/night) and 30/25ºC (day/night) and with two different photosynthetic photon flux density (PPFD) conditions (200 and 400 μmol•m−2•s−1 PPFD) at grape bunch level during a 14 h photoperiod. Fruiting cuttings were selected to have similar grape bunch size avoiding changes in berry quality. At least 9 plants were transferred to each treatment. Global pericarp gene expression was compared among the four growth conditions using the GrapeGen GeneChip®. The transcriptomic analysis was carried out in 14 DAT berries in order to identify stable responses to differential temperature and PPFD conditions not masked by quick transient responses to the environmental change. Moreover, grapes of the same density range (100-110 g NaCl·L-1)) from all four treatments were compared to ensure that treatment effects other than ripening rate shifts originated by the treatments, at least in terms of saccharimetric ripening, were being studied. ****[PLEXdb(http://www.plexdb.org) has submitted this series at GEO on behalf of the original contributor, Pablo Carbonell-Bejerano. The equivalent experiment is VV46 at PLEXdb.]
Project description:Grape berries undergo considerable physical and biochemical changes during the ripening process. Ripening is characterized by a number of changes, including the degradation of chlorophyll, an increase in berry deformability, a rapid increase in the level of hexoses in the berry vacuole, an increase in berry volume, the catabolism of organic acids, the development of skin colour, and the formation of compounds that influence flavour, aroma, and therefore, wine quality. The aim of this work is to identify differentially expressed genes during grape ripening by microarray and real-time PCR techniques. Using a custom array of new generation, we analysed the expression of 6000 grape genes from pre-veraison to full maturity, in Vitis vinifera cultivar Muscat of Hamburg, in two different years (2006 and 2007). Five time points per year and two biological replicates per stadium were considered. To reduced intra-plant and inter-plant biological variability, for each ripening stadium we collected around hundred berries from several bunch grapes of five plants of V. vinifera cv Muscat of Hamburg. We will use the real-time PCR technique to validate microarray data.Muscat of Hamburg. We will use the real-time PCR technique to validate microarray data.
Project description:The goal of this project aims to decipher the molecular effects of high temperature on developing Cabernet Sauvignon berries. Using grapevine fruiting cuttings, control and heat-treated berries were sampled to conduct transcriptomic, proteomic and metabolomic analysis.
Project description:To understand the fruit changes and mechanisms involved in the compatible grapevine-virus interaction, we analyzed the berry transcriptome in two stages of development (veraison and ripening) in the red wine cultivar Cabernet Sauvignon infected with Grapevine leaf-roll-associated virus-3 (GLRaV-3). Analysis of global gene expression patterns indicate incomplete berry maturation in infected berries as compared to uninfected fruit suggesting viral infection interrupts the normal berry maturation process. PLEXdb(http://www.plexdb.org) has submitted this series at GEO on behalf of the original contributor, Andrea Vega. The equivalent experiment is VV28 at PLEXdb. GLRaV-3 virus-infected, developmental stage: Veraison(3-replications); GLRaV-3 virus-infected, developmental stage: Ripening(3-replications); Virus-free, developmental stage: Veraison(4-replications); Virus-free, developmental stage: Ripening(4-replications)
Project description:Background: Grapevine berry, a nonclimacteric fruit, goes through three developmental stages, the last one called the ripening stage, when the berry changes color and dramatically increases in sugar. Flavors derived from terpenoid and fatty acid metabolism develop at the very end of this ripening stage. Whole-genome microarray analysis was used to assess the transcriptomic response of pulp and skin of Cabernet Sauvignon berries in the latter stages of ripening between 22 and 37 M-BM-0Brix. Grapevine berry, a nonclimacteric fruit, goes through three developmental stages, the last one called the ripening stage, when the berry changes color and dramatically increases in sugar. Flavors derived from terpenoid and fatty acid metabolism develop at the very end of this ripening stage. Whole-genome microarray analysis was used to assess the transcriptomic response of pulp and skin of Cabernet Sauvignon berries in the latter stages of ripening between 22 and 37 M-BM-0Brix. Results: There were approximatedly 18,000 transcripts whose abundance changed with M-BM-0Brix level and tissue type. There were very broad changes in many gene ontology (GO) categories involving metabolism, signaling and abiotic stress. GO categories reflecting tissue differences were overrepresentation in photoysynthesis, isoprenoid metabolism and pigment biosynthesis. A more detailed analysis of the interaction of the skin and pulp with M-BM-0Brix levels revealed that there were significantly higher abundances of transcripts changing with M-BM-0Brix level in the skin that were involved in ethylene signaling, isoprenoid and fatty acid metabolism. Many of these transcripts were peaking around the optimal fruit stage for flavor production. The transcript abundance of approximately two-thirds of the AP2/ERF Superfamily of transcription factors changed during these developmental stages. The transcript abundance of a unique clade of ERF6-type transcription factors had the largest changes and clustered with other genes involved in ethylene, senescence, and fruit flavor production including ACC oxidase, terpene synthases, and lipoxygenases. The transcript abundance of other important transcription factors (i.e. SPL, RIN, etc.) involved in the regulation of fruit ripening was also higher in the skin. Conclusions: A detailed analysis of the transcriptomic response of grapevine berries revealed that these berries went through massive changes in chemical signaling and metabolism in both the pulp and skin, particularly in the skin. The ethylene signaling pathway of this nonclimacteric fruit was significantly stimulated in the late stages of ripening when the production of transcripts for important flavor and aroma compounds were at their highest. Ethylene transcription factors known to play a role in leaf senescence also appear to play a role in fruit senescence. Ethylene may play a bigger role than previously thought in this non-climacteric fruit. Vitis vinifera L. cv. Cabernet Sauvignon (clone 8 scion on 1130 Paulsen rootstock) berries were harvested from J. Lohr Vineyards & Wines, Paso Robles, CA, USA. Whole-genome microarray analysis was used to assess the transcriptomic response of pulp and skin of berries in the latter stages of ripening between 22 and 37 M-BM-0Brix (2008 vintage).
Project description:Background: Grapevine berry, a nonclimacteric fruit, goes through three developmental stages, the last one called the ripening stage, when the berry changes color and dramatically increases in sugar. Flavors derived from terpenoid and fatty acid metabolism develop at the very end of this ripening stage. Whole-genome microarray analysis was used to assess the transcriptomic response of pulp and skin of Cabernet Sauvignon berries in the latter stages of ripening between 22 and 37 °Brix. Grapevine berry, a nonclimacteric fruit, goes through three developmental stages, the last one called the ripening stage, when the berry changes color and dramatically increases in sugar. Flavors derived from terpenoid and fatty acid metabolism develop at the very end of this ripening stage. Whole-genome microarray analysis was used to assess the transcriptomic response of pulp and skin of Cabernet Sauvignon berries in the latter stages of ripening between 22 and 37 °Brix. Results: There were approximatedly 18,000 transcripts whose abundance changed with °Brix level and tissue type. There were very broad changes in many gene ontology (GO) categories involving metabolism, signaling and abiotic stress. GO categories reflecting tissue differences were overrepresentation in photoysynthesis, isoprenoid metabolism and pigment biosynthesis. A more detailed analysis of the interaction of the skin and pulp with °Brix levels revealed that there were significantly higher abundances of transcripts changing with °Brix level in the skin that were involved in ethylene signaling, isoprenoid and fatty acid metabolism. Many of these transcripts were peaking around the optimal fruit stage for flavor production. The transcript abundance of approximately two-thirds of the AP2/ERF Superfamily of transcription factors changed during these developmental stages. The transcript abundance of a unique clade of ERF6-type transcription factors had the largest changes and clustered with other genes involved in ethylene, senescence, and fruit flavor production including ACC oxidase, terpene synthases, and lipoxygenases. The transcript abundance of other important transcription factors (i.e. SPL, RIN, etc.) involved in the regulation of fruit ripening was also higher in the skin. Conclusions: A detailed analysis of the transcriptomic response of grapevine berries revealed that these berries went through massive changes in chemical signaling and metabolism in both the pulp and skin, particularly in the skin. The ethylene signaling pathway of this nonclimacteric fruit was significantly stimulated in the late stages of ripening when the production of transcripts for important flavor and aroma compounds were at their highest. Ethylene transcription factors known to play a role in leaf senescence also appear to play a role in fruit senescence. Ethylene may play a bigger role than previously thought in this non-climacteric fruit.
Project description:Background: Global climate change, in particular the entailed predicted temperature increase, will noticeably affect plants vegetative and reproductive development. High temperatures alter the composition of the grapevine fruit, one of the most important fruits produced worldwide. This is leading to variable yield and quality, already observed in many growing regions in recent years. However, physiological processes underlying temperature response and tolerance of the grapevine fruit have hardly been investigated. Currently, all studies on fleshy fruits investigating their abiotic stress response on a molecular level were conducted during the day but possible night-specific variations were overlooked. The present study explores the grapevine fruit transcriptomic response at different developmental stages upon heat stress at day and night. Methodology/Principal Results: Short heat stresses (2 h) were applied at day and night to vines bearing clusters sequentially ordered according to the developmental stages along their vertical axis. The recently proposed microvine model was grown in climatic chambers in order to circumvent common constraints and biases introduced in field experiments with perennial vines. Post-véraison berry heterogeneity inside clusters was evaded upon constituting homogenous batches following organic acid and sugar measurements on individual berries. A whole genome transcriptomic approach was subsequently conducted using NimbelGen® 090918 12X microarrays (30K). Results revealed important differences in heat stress responsive pathways according to day or night treatment, in particular regarding genes within phenylpropanoid metabolism. Precise distinction of post-véraison stages led to a stage-specific detection of anthocyanin-related transcripts repressed by heat. Important modifications in cell wall-related processes as well as indications for a heat-induced delay of ripening and sugar accumulation were observed at véraison and reversed in later stages. Conclusion: This first day - night study on heat stress adaption of the grapevine berry shows that the transcriptome of fleshy fruits is differentially affected by abiotic stress at night. The present results emphasize the necessity to include different developmental stages and especially different time points in transcriptomic studies. A total of 12 samples were analyzed representing three berry developmental stages (two after the onset of ripening, one during green growth). At each stage, heat stress was applied at day and night. Controls and treated berry samples were drawn in triplicates (two in duplicates) at day and at night on the microvine dwarf (Dwarf Rapid Cycling and Continous Flowering; DRCF) gibberellin-insensitive (GAI) mutant.
Project description:Grapevine cluster compactness is a multi-componential trait of agronomical interest; it greatly influences the vineyard management and the visual aspect of table grape. Clusters with greater compactness are more susceptible to disease. The compactness can be break down in a patchwork of agronomical traits, each having agronomical importance that includes parameters related to inflorescence and cluster architecture (cluster length and width, length of pedicels, etc.), fruitfulness (number of berries, number of seeds) and berry (size, shape, volume...). Through visual evaluation of a collection of 730 clones from the cultivar Tempranillo and 501 clones from Garnacha Tinta we identified and fully phenotyped distinct clones which transcriptomes were compared at key developmental stages in order to identify the genes playing a role in mechanisms involved in cluster compactness such as the ones determining number of berries, cluster length or berry size. Key genes involved in this process were identified. The findings lead us to hypothesize that berry size and/or number at ripening are greatly influenced by the rate of cell replication in flowers during the first stages after pollination.
Project description:The interplay between environmental and genetic factors conditions the fruit ripening program in plants. Transcriptome analysis of grapevine fruits can help understanding these interactions to consciously cope with conditions leading to detrimental effects for viticultural purposes. However, considering the grapevine characteristic ripening asynchrony, which can be intensified by contrasting conditions, accurate grape sampling may be essential for molecular comparisons. In this study, berry density sorting according to floatability in NaCl solutions was assessed as a grape ripening staging strategy. Total sugar content was more correlated with berry density than with other non-invasive ripening parameters. The transcriptome was compared between three density classes collected near commercial maturity using grapevine whole-genome NimbleGen microarrays. Expression profiles clearly related with ripening progression were detected in a density series simultaneously collected from a vineyard of Albariño. By contrast, considerable differences were detected when the same density series was sampled on two different dates from the same vineyard of Tempranillo. Functional analysis indicated that environmental differences between both sampling moments determined most of these expression differences. Ripening degree-dependent responses to the environment were also detected. Finally, the effect of the sorting procedures on the grape transcriptome showed negligible when it was directly tested. Altogether, these findings evidence the convenience of homogenizing the developmental stage and the sampling time conditions for transcriptome comparisons. Berry density sorting proved useful to this end, although this method could be limited when the berry sugar concentration is not determined by the ripening developmental program.
Project description:Grapevine (Vitis vinifera L.) is a model for the investigation of physiological and biochemical changes during the formation and ripening of non-climacteric fleshy fruits. However, the order and complexity of the molecular events during fruit development remain poorly understood. To identify the key molecular events controlling berry formation and ripening, we created a highly detailed transcriptomic and metabolomic map of berry development, based on samples collected every week from fruit-set to maturity in two grapevine genotypes for three consecutive years, resulting in 219 samples. Major transcriptomic changes were represented by coordinated waves of gene expression associated with early development, veraison (onset of ripening)/mid-ripening and late-ripening and were consistent across vintages. The two genotypes were clearly distinguished by metabolite profiles and transcriptional changes occurring primarily at the veraison/mid-ripening phase. Co-expression analysis identified a core network of transcripts as well as variations in the within-module connections representing varietal differences. By focusing on transcriptome rearrangements close to veraison, we identified two rapid and successive shared transitions involving genes whose expression profiles precisely locate the timing of the molecular reprogramming of berry development. Functional analyses of two transcription factors, markers of the first transition, suggested that they participate in a hierarchical cascade of gene activation at the onset of ripening. This study defined the initial transcriptional events that mark and trigger the onset of ripening and the molecular network that characterizes the whole process of berry development, providing a framework to model fruit development and maturation in grapevine.