Project description:To understand the gene expression in Saccharomyces cerevisiae under fermentative and respiraotry conditions, we perfomred the genome-wide gene expression profiling for the log-phase cells of S. cerevisiae wild type, sef1 deletion, and hyperactive SEF1-VP16 mutants under the YPD and YPGly conditions.
Project description:Saccharomyces cerevisiae is an excellent microorganism for industrial succinic acid production, but high succinic acid concentration will inhibit the growth of Saccharomyces cerevisiae then reduce the production of succinic acid. Through analysis the transcriptomic data of Saccharomyces cerevisiae with different genetic backgrounds under different succinic acid stress, we hope to find the response mechanism of Saccharomyces cerevisiae to succinic acid.
Project description:Relative quantification of protein abundances of three yeast strains (Saccharomyces cerevisiae CEN.PK113-7D, Kluyveromyces marxianus CBS6556 and Yarrowia lipolytica W29) cultivate in chemostats under different conditions. The conditions for Saccharomyces cerevisiae CEN.PK113-7D are: - Standard condition – 30°C, pH 5.5 - High temperature - 36°C, pH 5.5 - Low pH - 30°C, pH 3.5 - Osmotic stress – 30°C, pH 5.5, 1M KCl The conditions for Kluyveromyces marxianus CBS6556 are: - Standard condition – 30°C, pH 5.5 - High temperature - 40°C, pH 5.5 - Low pH - 30°C, pH 3.5 - Osmotic stress – 30°C, pH 5.5, 0.6 M KCl The conditions for Yarrowia lipolytica W29 are: - Standard condition - 28°C, pH 5.5 - High temperature - 32°C, pH 5.5 - Low pH - 28°C, pH 3.5 This study is part of the OMICS data generation of CHASSY project (European Union’s Horizon 2020 grant agreement No 720824).
Project description:Protein extracts of three yeast strains (Saccharomyces cerevisiae CEN.PK113-7D, Kluyveromyces marxianus CBS6556 and Yarrowia lipolytica W29) cultivated in chemostats under different conditions. Representative samples containing aliquots of all conditions for each yeast strain were spiked with UPS2 standard (Sigma) to estimate absolute values in fmol. The conditions for Saccharomyces cerevisiae CEN.PK113-7D are: - Standard condition : 30°C, pH 5.5 - High temperature: 36°C, pH 5.5 - Low pH: 30°C, pH 3.5 - Osmotic stress : 30°C, pH 5.5, 1M KCl The conditions for Kluyveromyces marxianus CBS6556 are: - Standard condition : 30°C, pH 5.5 - High temperature: 40°C, pH 5.5 - Low pH: 30°C, pH 3.5 - Osmotic stress: 30°C, pH 5.5, 0.6 M KCl The conditions for Yarrowia lipolytica W29 are: - Standard condition: 28°C, pH 5.5 - High temperature: 32°C, pH 5.5 - Low pH: 28°C, pH 3.5 This study is part of the OMICS data generation WP of CHASSY project (European Union’s Horizon 2020 grant agreement No 720824).
Project description:Industrial bioethanol production may involve a low pH environment,improving the tolerance of S. cerevisiae to a low pH environment caused by inorganic acids may be of industrial importance to control bacterial contamination, increase ethanol yield and reduce production cost. Through analysis the transcriptomic data of Saccharomyces cerevisiae with different ploidy under low pH stress, we hope to find the tolerance mechanism of Saccharomyces cerevisiae to low pH.
Project description:Here we used mass spectrometry-based proteomics technology to explore SEPs with potential cellular stress function in Saccharomyces cerevisiae. Microproteins with unique peptides were identified under six culture conditions: normal, oxidation, starvation, UV radiation, heat shock, and heat shock with starvation.
Project description:Fungal group III histidine kinases are the molecular targets of some classes of fungicides. In contrast to the yeast Saccharomyces cerevisiae, the fungal pathogen Candida albicans possesses a group III histidine kinase, CaNik1p, also called Cos1p. To investigate the function of CaNIK1, the gene was expressed in S. cerevisiae. The transformants became susceptible to antifungal compounds to which the wild-type strain is resistant. The susceptibility was related to the activation of the MAP kinase Hog1p of the osmotic stress response pathway. Gene expression analysis revealed a strong overlap of the responses to osmotic stress and to fludioxonil at early time points. While the response to fludioxonil persisted, the response to osmotic stress was diminished with time.
Project description:ppGpp accumulation caused by ectopic expression of RelA in Saccharomyces cerevisiae gave rise to marked changes in gene expression with both upregulation and downregulation, including changes in mitochondrial gene expression. The most prominent upregulation (38-fold) was detected in the function-unknown hypothetical gene YBR072C-A, followed by many other known stress-responsive genes. ppGpp acuumulation resulted in enhancement of tolerance against various stress stimuli, such as osmotic stress, ethanol, hydrogen peroxide, and high temperature.
Project description:Fungal group III histidine kinases are the molecular targets of some classes of fungicides. In contrast to the yeast Saccharomyces cerevisiae, the fungal pathogen Candida albicans possesses a group III histidine kinase, CaNik1p, also called Cos1p. To investigate the function of CaNIK1, the gene was expressed in S. cerevisiae. The transformants became susceptible to antifungal compounds to which the wild-type strain is resistant. The susceptibility was related to the activation of the MAP kinase Hog1p of the osmotic stress response pathway. Gene expression analysis revealed a strong overlap of the responses to osmotic stress and to fludioxonil at early time points. While the response to fludioxonil persisted, the response to osmotic stress was diminished with time. S. cerevisiae expressing Candida albicans Nik1p were treated with 10 µg/ml fludioxonil. As a comparison, another culture of S. cerevisiae expressing Candida albicans Nik1p was treated with 1 M sorbitol to induce osmotic stress response. One culture remained untreated as a control. From all cultures, samples were taken after a duration of 15, 30 and 60 min.
Project description:In this study we focus on two Saccharomyces cerevisiae strains with varying production of heterologous α-amylase and we compare the metabolic fluxes and transcriptional regulation at aerobic and anaerobic conditions, in particular with the objective to identify the final electron acceptor for protein folding. We found that anaerobic conditions showed high amount of amylase productions when comparing to aerobic conditions and the genome-scale transcriptional analysis suggested that genes related to the endoplasmic reticulum (ER), lipid synthesis and stress responses were generally up-regulated at anaerobic conditions. Moreover, we proposed a model for the electron transfer from ER to the final electron acceptor, fumarate under anaerobic conditions.