Project description:The doublet histones of Marseillevirus are distantly related to the four eukaryotic core histones and wrap DNA to form remarkably similar nucleosomes. By releasing Marseillevirus chromatin from virions into solution and performing genome-wide nuclease digestion and chemical cleavage assays, we find that the higher-order organization of Marseillevirus chromatin differs greatly from that of eukaryotes. Marseillevirus nucleosomes fully protect DNA within virions, without linker DNA or phasing along genes. Likewise, we observe that most nucleosomes reconstituted onto 3-copy tandem repeats of a nucleosome positioning sequence are tightly packed and fully wrapped. We also document repeat generation and instability during viral passage in amoeboid culture. Dense promiscuous packing of fully wrapped nucleosomes rather than “beads-on-a-string” with genic punctuation suggests a viral genome protection function for doublet histones.
2022-09-27 | GSE193224 | GEO
Project description:giant panda blood transcriptomes
Project description:Evaluation of short-read-only, long-read-only, and hybrid assembly approaches on metagenomic samples demonstrating how they affect gene and protein prediction which is relevant for downstream functional analyses. For a human gut microbiome sample, we use complementary metatranscriptomic, and metaproteomic data to evaluate the metagenomic-based protein predictions.
Project description:A Marseillevirus (giant virus of amoeba) has been found in the blood and stool samples of individuals who otherwise appear to be healthy. During an attempt to define a serological cutoff for Marseillevirus by enzyme-linked immunosorbent assay (ELISA) in children, we serendipitously detected high antibody responses to Marseillevirus in an 11-month-old boy suffering from adenitis. Marseillevirus DNA was then found in his blood using PCR and with a unique sequence. We identified Marseillevirus in a lymph node using fluorescence in situ hybridization (FISH) and immunohistochemistry, and the lymph node was removed surgically. The child was declared to be cured 1 year later. We conclude that adenitis during early childhood may be caused by Marseillevirus.